Virus trafficking – learning from single-virus tracking

What could be a better way to study virus trafficking than 'miniaturizing oneself' and 'taking a ride with the virus particle' on its journey into the cell? Single-virus tracking in living cells potentially provides us with the means to visualize the virus journey. This approach allows us to follow the fate of individual virus particles and monitor dynamic interactions between viruses and cellular structures, revealing previously unobservable infection steps. The entry, trafficking and egress mechanisms of various animal viruses have been elucidated using this method. The combination of single-virus trafficking with systems approaches and state-of-the-art imaging technologies should prove exciting in the future.

[1]  A. Helenius,et al.  On the entry of semliki forest virus into BHK-21 cells , 1980, The Journal of cell biology.

[2]  A Helenius,et al.  Infectious entry pathway of influenza virus in a canine kidney cell line , 1981, The Journal of cell biology.

[3]  W. Webb,et al.  Diffusion of low density lipoprotein-receptor complex on human fibroblasts , 1982, The Journal of cell biology.

[4]  R Nuydens,et al.  Probing microtubule-dependent intracellular motility with nanometre particle video ultramicroscopy (nanovid ultramicroscopy). , 1985, Cytobios.

[5]  T. Bächi,et al.  Direct observation of the budding and fusion of an enveloped virus by video microscopy of viable cells , 1988, The Journal of cell biology.

[6]  M. Sheetz,et al.  Tracking kinesin-driven movements with nanometre-scale precision , 1988, Nature.

[7]  S Inoué,et al.  Imaging of unresolved objects, superresolution, and precision of distance measurement with video microscopy. , 1989, Methods in cell biology.

[8]  D. P. Sarkar,et al.  Observation of single influenza virus-cell fusion and measurement by fluorescence video microscopy. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[9]  L. B. Chen,et al.  Detection of individual fluorescently labeled reovirions in living cells. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[10]  H. Qian,et al.  Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. , 1991, Biophysical journal.

[11]  M. J. Cormier,et al.  Primary structure of the Aequorea victoria green-fluorescent protein. , 1992, Gene.

[12]  R. Cherry,et al.  Tracking of cell surface receptors by fluorescence digital imaging microscopy using a charge-coupled device camera. Low-density lipoprotein and influenza virus receptor mobility at 4 degrees C. , 1992, Journal of cell science.

[13]  R Y Tsien,et al.  Wavelength mutations and posttranslational autoxidation of green fluorescent protein. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[14]  M. Saxton,et al.  Single-particle tracking: models of directed transport. , 1994, Biophysical journal.

[15]  F. Tsuji,et al.  Aequorea green fluorescent protein , 1994, FEBS letters.

[16]  W. Webb,et al.  Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules. , 1994, Biophysical journal.

[17]  M. Chalfie,et al.  Green fluorescent protein as a marker for gene expression. , 1994, Science.

[18]  Kiwamu Saito,et al.  Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution , 1995, Nature.

[19]  P. Cossart,et al.  Actin-based motility of vaccinia virus , 1995, Nature.

[20]  R Y Tsien,et al.  Specific covalent labeling of recombinant protein molecules inside live cells. , 1998, Science.

[21]  Francesca Santini,et al.  Spatial control of coated-pit dynamics in living cells , 1999, Nature Cell Biology.

[22]  Urs F. Greber,et al.  Microtubule-dependent Plus- and Minus End–directed Motilities Are Competing Processes for Nuclear Targeting of Adenovirus , 1999, The Journal of cell biology.

[23]  G. Elliott,et al.  Live-Cell Analysis of a Green Fluorescent Protein-Tagged Herpes Simplex Virus Infection , 1999, Journal of Virology.

[24]  K. Luby-Phelps,et al.  Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. , 2000, International review of cytology.

[25]  M. Hallek,et al.  Real-Time Single-Molecule Imaging of the Infection Pathway of an Adeno-Associated Virus , 2001, Science.

[26]  T. Zimmermann,et al.  Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus , 2001, Nature Cell Biology.

[27]  B. Moss,et al.  Visualization of Intracellular Movement of Vaccinia Virus Virions Containing a Green Fluorescent Protein-B5R Membrane Protein Chimera , 2001, Journal of Virology.

[28]  U. Greber,et al.  Adenovirus‐activated PKA and p38/MAPK pathways boost microtubule‐mediated nuclear targeting of virus , 2001, The EMBO journal.

[29]  Lucas Pelkmans,et al.  Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER , 2001, Nature Cell Biology.

[30]  M. Law,et al.  Vaccinia virus utilizes microtubules for movement to the cell surface , 2001, The Journal of cell biology.

[31]  B. Moss,et al.  Vaccinia Virus Intracellular Movement Is Associated with Microtubules and Independent of Actin Tails , 2001, Journal of Virology.

[32]  U. Greber,et al.  Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake , 2002, The Journal of cell biology.

[33]  C. Echeverri,et al.  Function of dynein and dynactin in herpes simplex virus capsid transport. , 2002, Molecular biology of the cell.

[34]  Gary R. Whittaker,et al.  Influenza Virus Can Enter and Infect Cells in the Absence of Clathrin-Mediated Endocytosis , 2002, Journal of Virology.

[35]  D. McDonald,et al.  Visualization of the intracellular behavior of HIV in living cells , 2002, The Journal of cell biology.

[36]  Robert M Dickson,et al.  Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. , 2002, Journal of the American Chemical Society.

[37]  Lucas Pelkmans,et al.  Local Actin Polymerization and Dynamin Recruitment in SV40-Induced Internalization of Caveolae , 2002, Science.

[38]  Jean-Christophe Olivo-Marin,et al.  Extraction of spots in biological images using multiscale products , 2002, Pattern Recognit..

[39]  W B Amos,et al.  How the Confocal Laser Scanning Microscope entered Biological Research , 2003, Biology of the cell.

[40]  D. Axelrod Total Internal Reflection Fluorescence Microscopy in Cell Biology , 2001, Traffic.

[41]  Victoria J Allan,et al.  Light Microscopy Techniques for Live Cell Imaging , 2003, Science.

[42]  M. Law,et al.  Vaccinia virus motility. , 2003, Annual review of microbiology.

[43]  W. Webb,et al.  Nonlinear magic: multiphoton microscopy in the biosciences , 2003, Nature Biotechnology.

[44]  L. Pelkmans,et al.  Insider information: what viruses tell us about endocytosis. , 2003, Current opinion in cell biology.

[45]  S. Hell Toward fluorescence nanoscopy , 2003, Nature Biotechnology.

[46]  Michael J Rust,et al.  Visualizing infection of individual influenza viruses , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Sandra L. Schmid,et al.  Regulated portals of entry into the cell , 2003, Nature.

[48]  Jean-Christophe Olivo-Marin,et al.  Split and merge data association filter for dense multi-target tracking , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[49]  L. Pelkmans,et al.  Caveolin-Stabilized Membrane Domains as Multifunctional Transport and Sorting Devices in Endocytic Membrane Traffic , 2004, Cell.

[50]  T. Newsome,et al.  Src Mediates a Switch from Microtubule- to Actin-Based Motility of Vaccinia Virus , 2004, Science.

[51]  L. Pelkmans,et al.  Echovirus 1 endocytosis into caveosomes requires lipid rafts, dynamin II, and signaling events. , 2004, Molecular biology of the cell.

[52]  Chen Chen,et al.  Using single-particle tracking to study nuclear trafficking of viral genes. , 2004, Biophysical journal.

[53]  L. Enquist,et al.  Local modulation of plus-end transport targets herpesvirus entry and egress in sensory axons. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Kartik Chandran,et al.  Endocytosis by Random Initiation and Stabilization of Clathrin-Coated Pits , 2004, Cell.

[55]  Feng Zhang,et al.  Assembly of endocytic machinery around individual influenza viruses during viral entry , 2004, Nature Structural &Molecular Biology.

[56]  M. Way,et al.  Transport of African Swine Fever Virus from Assembly Sites to the Plasma Membrane Is Dependent on Microtubules and Conventional Kinesin , 2004, Journal of Virology.

[57]  Varpu Marjomäki,et al.  Clustering induces a lateral redistribution of alpha 2 beta 1 integrin from membrane rafts to caveolae and subsequent protein kinase C-dependent internalization. , 2003, Molecular biology of the cell.

[58]  B. Roth,et al.  The Human Polyomavirus, JCV, Uses Serotonin Receptors to Infect Cells , 2004, Science.

[59]  A. Nicola,et al.  Cellular and Viral Requirements for Rapid Endocytic Entry of Herpes Simplex Virus , 2004, Journal of Virology.

[60]  H. Kräusslich,et al.  Involvement of Clathrin-Mediated Endocytosis in Human Immunodeficiency Virus Type 1 Entry , 2005, Journal of Virology.

[61]  Lucas Pelkmans,et al.  Clathrin- and caveolin-1–independent endocytosis , 2005, The Journal of cell biology.

[62]  Y. Stierhof,et al.  Human Cytomegalovirus Labeled with Green Fluorescent Protein for Live Analysis of Intracellular Particle Movements , 2005, Journal of Virology.

[63]  Nathan C Shaner,et al.  A guide to choosing fluorescent proteins , 2005, Nature Methods.

[64]  Geoffrey L. Smith,et al.  Vaccinia virus intracellular enveloped virions move to the cell periphery on microtubules in the absence of the A36R protein. , 2005, The Journal of general virology.

[65]  L. Enquist,et al.  Heterogeneity of a Fluorescent Tegument Component in Single Pseudorabies Virus Virions and Enveloped Axonal Assemblies , 2005, Journal of Virology.

[66]  Nathan M. Sherer,et al.  Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells , 2005, The Journal of cell biology.

[67]  Y. Kalaidzidis,et al.  Rab Conversion as a Mechanism of Progression from Early to Late Endosomes , 2005, Cell.

[68]  Konstantin A Lukyanov,et al.  Fluorescent proteins as a toolkit for in vivo imaging. , 2005, Trends in biotechnology.

[69]  Bianca Habermann,et al.  Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis , 2005, Nature.

[70]  J. Young,et al.  Imaging individual retroviral fusion events: from hemifusion to pore formation and growth. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[71]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[72]  Gregory A. Smith,et al.  Targeting of herpesvirus capsid transport in axons is coupled to association with specific sets of tegument proteins. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Petros Koumoutsakos,et al.  Single-particle tracking of murine polyoma virus-like particles on live cells and artificial membranes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[74]  P. Koumoutsakos,et al.  Feature point tracking and trajectory analysis for video imaging in cell biology. , 2005, Journal of structural biology.

[75]  G. Melikyan,et al.  Time-resolved imaging of HIV-1 Env-mediated lipid and content mixing between a single virion and cell membrane. , 2005, Molecular biology of the cell.

[76]  A. Helenius,et al.  Rab7 Associates with Early Endosomes to Mediate Sorting and Transport of Semliki Forest Virus to Late Endosomes , 2005, PLoS biology.

[77]  L. Trotman,et al.  Nuclear targeting of adenovirus type 2 requires CRM1-mediated nuclear export. , 2005, Molecular biology of the cell.

[78]  M. Gustafsson Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[79]  A. Kar,et al.  Assembly and Intracellular Localization of the Bluetongue Virus Core Protein VP3 , 2005, Journal of Virology.

[80]  Conor L Evans,et al.  Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[81]  B. Ward Visualization and Characterization of the Intracellular Movement of Vaccinia Virus Intracellular Mature Virions , 2005, Journal of Virology.

[82]  N. Demaurex,et al.  Endosome-to-cytosol transport of viral nucleocapsids , 2005, Nature Cell Biology.

[83]  L. Pelkmans,et al.  Assembly and trafficking of caveolar domains in the cell , 2005, The Journal of cell biology.

[84]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[85]  R. Tsien,et al.  The Fluorescent Toolbox for Assessing Protein Location and Function , 2006, Science.

[86]  F. Frischknecht,et al.  Abl collaborates with Src family kinases to stimulate actin‐based motility of vaccinia virus , 2006, Cellular microbiology.

[87]  B. Sodeik,et al.  Eclipse Phase of Herpes Simplex Virus Type 1 Infection: Efficient Dynein-Mediated Capsid Transport without the Small Capsid Protein VP26 , 2006, Journal of Virology.

[88]  Grace E. Lee,et al.  Reconstitution of Herpes Simplex Virus Microtubule-Dependent Trafficking In Vitro , 2006, Journal of Virology.

[89]  Gregory A. Smith,et al.  The Pseudorabies Virus VP1/2 Tegument Protein Is Required for Intracellular Capsid Transport , 2006, Journal of Virology.

[90]  Mouse Polyomavirus Enters Early Endosomes, Requires Their Acidic pH for Productive Infection, and Meets Transferrin Cargo in Rab11-Positive Endosomes , 2006, Journal of Virology.

[91]  S. Shorte,et al.  Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes , 2006, Nature Methods.

[92]  Andries Zijlstra,et al.  Viral nanoparticles as tools for intravital vascular imaging , 2006, Nature Medicine.

[93]  J. Olivo-Marin,et al.  Multiple Particle Tracking in 3-D+ Microscopy: Method and Application to the Tracking of Endocytosed Quantum Dots , 2006 .

[94]  B. Sodeik,et al.  Viral interactions with the cytoskeleton: a hitchhiker's guide to the cell , 2006, Cellular microbiology.

[95]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[96]  M. Resh,et al.  Identification of an Intracellular Trafficking and Assembly Pathway for HIV‐1 Gag , 2006, Traffic.

[97]  V. Rotello,et al.  Quantum dot encapsulation in viral capsids. , 2006, Nano letters.

[98]  Garry P Nolan,et al.  Chemical labeling strategies for cell biology , 2006, Nature Methods.

[99]  J. Bergelson,et al.  Virus-Induced Abl and Fyn Kinase Signals Permit Coxsackievirus Entry through Epithelial Tight Junctions , 2006, Cell.

[100]  Mark Marsh,et al.  Virus Entry: Open Sesame , 2006, Cell.

[101]  B. Sodeik,et al.  The Inner Tegument Promotes Herpes Simplex Virus Capsid Motility Along Microtubules in vitro , 2006, Traffic.

[102]  Michael J Rust,et al.  Ligands for Clathrin-Mediated Endocytosis Are Differentially Sorted into Distinct Populations of Early Endosomes , 2006, Cell.

[103]  J. Rietdorf,et al.  African swine fever virus induces filopodia‐like projections at the plasma membrane , 2006, Cellular microbiology.

[104]  Gregory A. Smith,et al.  The Herpesvirus Capsid Surface Protein, VP26, and the Majority of the Tegument Proteins Are Dispensable for Capsid Transport toward the Nucleus , 2006, Journal of Virology.

[105]  U. Greber,et al.  A Superhighway to Virus Infection , 2006, Cell.

[106]  Michael J. Saxton,et al.  SINGLE-PARTICLE TRACKING , 2009 .