A novel modification to boron-doped diamond electrode for enhanced, selective detection of dopamine in human serum

[1]  B. Jill Venton,et al.  Nanodiamond Coating Improves the Sensitivity and Antifouling Properties of Carbon-Fiber Microelectrodes. , 2019, ACS sensors.

[2]  Tsuyohiko Fujigaya,et al.  Enhanced platinum utilization efficiency of polymer-coated carbon black as an electrocatalyst in polymer electrolyte membrane fuel cells , 2019, Electrochimica Acta.

[3]  V. Promarak,et al.  Polydopamine-coated carbon nanodots are a highly selective turn-on fluorescent probe for dopamine , 2019, Carbon.

[4]  A. Hill,et al.  Evolution of the Interfacial Structure of a Catalyst Ink with the Quality of the Dispersing Solvent: A Contrast Variation Small-Angle and Ultrasmall-Angle Neutron Scattering Investigation. , 2019, ACS applied materials & interfaces.

[5]  E. Randviir A cross examination of electron transfer rate constants for carbon screen-printed electrodes using Electrochemical Impedance Spectroscopy and cyclic voltammetry , 2018, Electrochimica Acta.

[6]  Li Fu,et al.  Highly stable and regenerative graphene-diamond hybrid electrochemical biosensor for fouling target dopamine detection. , 2018, Biosensors & bioelectronics.

[7]  I. Cacciotti,et al.  Electroanalysis moves towards paper-based printed electronics: carbon black nanomodified inkjet-printed sensor for ascorbic acid detection as a case study , 2018, Sensors and Actuators B: Chemical.

[8]  Zhiming Yu,et al.  Long-term stability of Au nanoparticle-anchored porous boron-doped diamond hybrid electrode for enhanced dopamine detection , 2018 .

[9]  A. Wee,et al.  An ultra-sensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection , 2018 .

[10]  K. Kalcher,et al.  Electrochemical Determination of Natural Drug Colchicine in Pharmaceuticals and Human Serum Sample and its Interaction with DNA , 2017 .

[11]  K. Hassan,et al.  Simultaneous determination of ascorbic acid, uric acid and dopamine at modified electrode based on hybrid nickel hexacyanoferrate/poly(1,5-diaminonaphthalene) , 2017, Journal of the Iranian Chemical Society.

[12]  Annamalai Senthil Kumar,et al.  Water based homogenous carbon ink modified electrode as an efficient sensor system for simultaneous detection of ascorbic acid, dopamine and uric acid , 2017 .

[13]  Ş. Pekyardımcı,et al.  A selective sensor based on Au nanoparticles-graphene oxide-poly(2,6-pyridinedicarboxylic acid) composite for simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid , 2017, Journal of Applied Electrochemistry.

[14]  J. Xie,et al.  Investigation of the Interaction between Nafion Ionomer and Surface Functionalized Carbon Black Using Both Ultrasmall Angle X-ray Scattering and Cryo-TEM. , 2017, ACS applied materials & interfaces.

[15]  Ashutosh Kumar Singh,et al.  Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015 , 2016, Lancet.

[16]  Geoffrey W. Nelson,et al.  Novel Modifications to Carbon-Based Electrodes to Improve the Electrochemical Detection of Dopamine. , 2016, ACS applied materials & interfaces.

[17]  Xuan Zhang,et al.  One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid , 2016 .

[18]  H. Filik,et al.  Simultaneous detection of ascorbic acid, dopamine, uric acid and tryptophan with Azure A-interlinked multi-walled carbon nanotube/gold nanoparticles composite modified electrode , 2016 .

[19]  S. Machado,et al.  Nanostructured carbon black for simultaneous sensing in biological fluids , 2016 .

[20]  J. Labuda,et al.  Chemical Modification of Boron-Doped Diamond Electrodes for Applications to Biosensors and Biosensing , 2016, Critical reviews in analytical chemistry.

[21]  Haowen Huang,et al.  A glassy carbon electrode modified with a nickel(II) norcorrole complex and carbon nanotubes for simultaneous or individual determination of ascorbic acid, dopamine, and uric acid , 2016, Microchimica Acta.

[22]  J. Foord,et al.  Diamond electrochemistry at the nanoscale: A review , 2016 .

[23]  Chanbasha Basheer,et al.  Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: A review , 2016 .

[24]  Y. Yang,et al.  One-pot synthesis of reduced graphene oxide/zinc sulfide nanocomposite at room temperature for simultaneous determination of ascorbic acid, dopamine and uric acid , 2015 .

[25]  Danila Moscone,et al.  Screen‐Printed Electrodes Modified with Carbon Nanomaterials: A Comparison among Carbon Black, Carbon Nanotubes and Graphene , 2015 .

[26]  Hongbin Cao,et al.  Tuning sulfur doping in graphene for highly sensitive dopamine biosensors , 2015 .

[27]  Michael L Heien,et al.  Biocompatible PEDOT:Nafion composite electrode coatings for selective detection of neurotransmitters in vivo. , 2015, Analytical chemistry.

[28]  S. Pruneanu,et al.  The influence of uric and ascorbic acid on the electrochemical detection of dopamine using graphene-modified electrodes , 2015 .

[29]  Jingjing Jiang,et al.  Sensitive electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, and uric acid based on Au@Pd-reduced graphene oxide nanocomposites. , 2014, Nanoscale.

[30]  Danila Moscone,et al.  Laccase biosensor based on screen-printed electrode modified with thionine-carbon black nanocomposite, for Bisphenol A detection , 2013 .

[31]  Rajendra D. Badgaiyan,et al.  Detection of dopamine neurotransmission in “real time” , 2013, Front. Neurosci..

[32]  Raluca-Ioana Stefan-van Staden,et al.  Flow-injection analysis systems with different detection devices and other related techniques for the in vitro and in vivo determination of dopamine as neurotransmitter. A review. , 2012 .

[33]  Martin M. F. Choi,et al.  Simultaneous determination of L-ascorbic acid, dopamine and uric acid with gold nanoparticles-β-cyclodextrin-graphene-modified electrode by square wave voltammetry. , 2012, Talanta.

[34]  Yibin Ying,et al.  Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode. , 2012, Biosensors & bioelectronics.

[35]  A. Krueger,et al.  Functionality is Key: Recent Progress in the Surface Modification of Nanodiamond , 2012 .

[36]  K. Yoshimi,et al.  Dopamine detection on boron-doped diamond electrodes using fast cyclic voltammetry , 2012 .

[37]  Xueying Wang,et al.  Simultaneous determination of dopamine, ascorbic acid, and uric acid using helical carbon nanotubes modified electrode , 2012 .

[38]  Chia-Liang Sun,et al.  The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. , 2011, Biosensors & bioelectronics.

[39]  Vincent Castranova,et al.  Quantitative techniques for assessing and controlling the dispersion and biological effects of multiwalled carbon nanotubes in mammalian tissue culture cells. , 2010, ACS nano.

[40]  Suresh K. Bhargava,et al.  Electrochemical detection of dopamine and cytochrome c at a nanostructured gold electrode , 2010 .

[41]  Taghi Khayamian,et al.  Highly selective determination of ascorbic acid, dopamine, and uric acid by differential pulse voltammetry using poly(sulfonazo III) modified glassy carbon electrode , 2010 .

[42]  Craig E. Banks,et al.  Characterization and fabrication of disposable screen printed microelectrodes , 2009 .

[43]  J. Luong,et al.  Selective nanomolar detection of dopamine using a boron-doped diamond electrode modified with an electropolymerized sulfobutylether-beta-cyclodextrin-doped poly(N-acetyltyramine) and polypyrrole composite film. , 2009, Analytical chemistry.

[44]  A. Fujishima,et al.  Enhanced electrochemical response in oxidative differential pulse voltammetry of dopamine in the presence of ascorbic acid at carboxyl-terminated boron-doped diamond electrodes , 2009 .

[45]  J. Luong,et al.  Selective detection of dopamine using a combined permselective film of electropolymerized (poly-tyramine and poly-pyrrole-1-propionic acid) on a boron-doped diamond electrode. , 2009, The Analyst.

[46]  Yang Liu,et al.  Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode. , 2008, Biosensors & bioelectronics.

[47]  Yang Liu,et al.  Simultaneous determination of dopamine, ascorbic acid and uric acid with electrospun carbon nanofibers modified electrode , 2008 .

[48]  Milos Nesladek,et al.  Growth, electronic properties and applications of nanodiamond , 2008 .

[49]  A. Fujishima,et al.  Selective Determination of Dopamine on a Boron‐Doped Diamond Electrode Modified with Gold Nanoparticle/Polyelectrolyte‐coated Polystyrene Colloids , 2008 .

[50]  G. Muthuraman,et al.  The role of oxygen functionalities and edge plane sites on screen-printed carbon electrodes for simultaneous determination of dopamine, uric acid and ascorbic acid , 2008 .

[51]  R. Ramamurti,et al.  Boron doped diamond deposited by microwave plasma-assisted CVD at low and high pressures , 2008 .

[52]  S. Kitazawa,et al.  Fabrication, characterization, and application of boron-doped diamond microelectrodes for in vivo dopamine detection. , 2007, Analytical chemistry.

[53]  S. H. Lee,et al.  Resolution of dopamine and ascorbic acid using nickel(II) complex polymer-modified electrodes , 2007 .

[54]  D. Tryk,et al.  Boron-doped diamond electrodes: The role of surface termination in the oxidation of dopamine and ascorbic acid , 2007 .

[55]  Wen-Li Jia,et al.  Highly selective and sensitive determination of dopamine using a Nafion/carbon nanotubes coated poly(3-methylthiophene) modified electrode. , 2006, Biosensors & bioelectronics.

[56]  M. Elimelech,et al.  Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes. , 2006, Environmental science & technology.

[57]  John G. Nutt,et al.  Diagnosis and Initial Management of Parkinson's Disease , 2005 .

[58]  J. Xue,et al.  Gold‐Cluster Sensors Formed Electrochemically at Boron‐Doped‐Diamond Electrodes: Detection of Dopamine in the Presence of Ascorbic Acid and Thiols , 2005 .

[59]  R. R. Moore,et al.  Basal plane pyrolytic graphite modified electrodes: comparison of carbon nanotubes and graphite powder as electrocatalysts. , 2004, Analytical chemistry.

[60]  R. Antiochia,et al.  An Extended Method for the Practical Evaluation of the Standard Rate Constant from Cyclic Voltammetric Data , 2004 .

[61]  C. Nemeroff The Biochemical Basis of Neuropharmacology, 8th ed. , 2004 .

[62]  A. Deneuville,et al.  Non-destructive determination of the boron concentration of heavily doped metallic diamond thin films from Raman spectroscopy , 2003 .

[63]  G. Mills,et al.  Metal diffusion properties of a Nafion-coated porous membrane in an aquatic passive sampler system. , 2003, Journal of Environmental Monitoring.

[64]  Xu,et al.  Standard electrochemical behavior of high-quality, boron-doped polycrystalline diamond thin-film electrodes , 2000, Analytical chemistry.

[65]  A. Fujishima,et al.  Introduction of Oxygen‐Containing Functional Groups onto Diamond Electrode Surfaces by Oxygen Plasma and Anodic Polarization , 1999 .

[66]  Lloyd A. Currie,et al.  Nomenclature in evaluation of analytical methods including detection and quantification capabilities1: (IUPAC Recommendations 1995) , 1999 .

[67]  A. Ewing,et al.  Chemical profiles and monitoring dynamics at an individual nerve cell in Planorbis corneus with electrochemical detection. , 1999, Journal of pharmaceutical and biomedical analysis.

[68]  L. A. Currie,et al.  Guidelines for calibration in analytical chemistry. Part I. Fundamentals and single component calibration (IUPAC Recommendations 1998) , 1998 .

[69]  R. McCreery,et al.  Spatially Resolved Raman Spectroscopy of Carbon Electrode Surfaces: Observations of Structural and Chemical Heterogeneity , 1997 .

[70]  L. A. Currie,et al.  Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995) , 1995 .

[71]  R. McCreery,et al.  Raman Spectroscopy of Carbon Materials: Structural Basis of Observed Spectra , 1990 .

[72]  R. Wightman,et al.  Detection of dopamine dynamics in the brain. , 1988, Analytical chemistry.

[73]  S. Speciale,et al.  Dopamine in plasma of lateral and medial hypophysial portal vessels: evidence for regional variation in the release of hypothalamic dopamine into hypophysial portal blood. , 1984, Endocrinology.

[74]  R. J. Klingler,et al.  Heterogeneous rates of electron transfer. Application of cyclic voltammetric techniques to irreversible electrochemical processes , 1980 .

[75]  Floyd E. Bloom,et al.  The Biochemical Basis of Neuropharmacology , 1978 .

[76]  R. S. Nicholson,et al.  Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems. , 1964 .

[77]  Ľ. Švorc,et al.  Electrochemical Behaviour Study and Sensitive Determination of Dopamine on Cathodically Pretreated Boron-doped Diamond Electrode , 2014 .

[78]  Dan Liu,et al.  Investigation on Electrochemically Cathodic Polarization of Boron-Doped Diamond Electrodes and Its Influence on Lead Ions Analysis , 2014 .

[79]  Rashid O. Kadara,et al.  Disposable highly ordered pyrolytic graphite-like electrodes: Tailoring the electrochemical reactivity of screen printed electrodes , 2010 .

[80]  S. Ferro,et al.  Electrochemical behaviour of dopamine at Nafion®-modified bo- ron doped diamond electrode: preliminary results , 2007 .

[81]  Hubert H. Girault,et al.  Micro-Glassy Carbon Inks for Thick-Film Electrodes , 1997 .