Stratospheric aerosol characteristics from SCIAMACHY limb observations: 2-parameter retrieval

. Stratospheric aerosols play a key role in atmospheric chemistry and climate. Their particle size is a crucial factor controlling the microphysical, radiative, and chemical aerosol processes in the stratosphere. Despite its importance, available observations on aerosol particle size are rather sparse. This limits our understanding and knowledge about the mechanisms and importance of chemical and climate aerosol feedbacks. The retrieval described by Malinina et al. (2018) provides the stratospheric particle 5 size distribution (PSD) from SCIAMACHY limb observations in the tropics. This algorithm has now been improved and extended to work on the entire globe. Two PSD parameters of a unimodal lognormal PSD, the median radius and the geometric standard deviation, are retrieved between 18 and 35 km altitude from SCIAMACHY limb observations by a multi-wavelength non-linear regularized inversion. This assumes a fixed number density profile. The extinction coefficient and the effective radius are calculated. The effective Lambertian surface albedo pre-retrieved from coinciding SCIAMACHY nadir observations 10 is integrated into the retrieval algorithm to mitigate the influence of the surface albedo on the retrieval results. The aerosol characteristics from SCIAMACHY are compared with in-situ balloon-borne measurements from Laramie, Wyoming, and retrievals from the satellite instruments SAGE II, SAGE III, and OSIRIS. In the northern hemisphere, the median radius differs by less than 27 % and

[1]  J. Burrows,et al.  SCIATRAN software package (V4.6): update and further development of aerosol, clouds, surface reflectance databases and models , 2023, Geoscientific Model Development.

[2]  J. Lelieveld,et al.  Reconstructing volcanic radiative forcing since 1990, using a comprehensive emission inventory and spatially resolved sulfur injections from satellite data in a chemistry-climate model , 2023, Atmospheric Chemistry and Physics.

[3]  B. Legras,et al.  Radiative impacts of the Australian bushfires 2019–2020 – Part 1: Large-scale radiative forcing , 2022, Atmospheric Chemistry and Physics.

[4]  C. Timmreck,et al.  Volcanic effects on climate: recent advances and future avenues , 2022, Bulletin of Volcanology.

[5]  C. Timmreck,et al.  Changes in stratospheric aerosol extinction coefficient after the 2018 Ambae eruption as seen by OMPS-LP and MAECHAM5-HAM , 2021, Atmospheric Chemistry and Physics.

[6]  L. Nazarenko,et al.  Response of the Quasi‐Biennial Oscillation to Historical Volcanic Eruptions , 2021, Geophysical Research Letters.

[7]  L. Oman,et al.  The long-term transport and radiative impacts of the 2017 British Columbia pyrocumulonimbus smoke aerosols in the stratosphere , 2021, Atmospheric Chemistry and Physics.

[8]  J. Smerdon,et al.  Global Temperature Responses to Large Tropical Volcanic Eruptions in Paleo Data Assimilation Products and Climate Model Simulations Over the Last Millennium , 2021, Paleoceanography and Paleoclimatology.

[9]  C. von Savigny,et al.  Retrieval of stratospheric aerosol size distribution parameters using satellite solar occultation measurements at three wavelengths , 2021 .

[10]  B. Legras,et al.  Stratospheric aerosol layer perturbation caused by the 2019 Raikoke and Ulawun eruptions and their radiative forcing , 2021 .

[11]  Nicholas Ernest,et al.  The Global Space-based Stratospheric Aerosol Climatology (version 2.0): 1979–2018 , 2020 .

[12]  C. Timmreck,et al.  Robust Multiyear Climate Impacts of Volcanic Eruptions in Decadal Prediction Systems , 2020, Journal of Geophysical Research: Atmospheres.

[13]  M. Dubey,et al.  CMIP5 Climate Models Overestimate Cooling by Volcanic Aerosols , 2020, Geophysical Research Letters.

[14]  A. Schmidt,et al.  A New Volcanic Stratospheric Sulfate Aerosol Forcing Emulator (EVA_H): Comparison With Interactive Stratospheric Aerosol Models , 2019, Journal of Geophysical Research: Atmospheres.

[15]  L. Thomason,et al.  Satellite Limb Observations of Unprecedented Forest Fire Aerosol in the Stratosphere , 2019, Journal of Geophysical Research: Atmospheres.

[16]  C. von Savigny,et al.  Challenges in retrieving stratospheric aerosol extinction and particle size from ground-based RMR-LIDAR observations , 2019 .

[17]  D. Degenstein,et al.  A Multiwavelength Retrieval Approach for Improved OSIRIS Aerosol Extinction Retrievals , 2019, Journal of Geophysical Research: Atmospheres.

[18]  B. Luo,et al.  Retrieval of Aerosol Size Distributions From In Situ Particle Counter Measurements: Instrument Counting Efficiency and Comparisons With Satellite Measurements , 2019, Journal of geophysical research. Atmospheres : JGR.

[19]  H. Bovensmann,et al.  Stratospheric aerosol characteristics from space-borne observations: extinction coefficient and Ångström exponent , 2018, Atmospheric Measurement Techniques.

[20]  B. Martinsson,et al.  Volcanic impact on the climate – the stratospheric aerosol load in the period 2006–2015 , 2018, Atmospheric Chemistry and Physics.

[21]  Jan-Peter Muller,et al.  The importance of surface reflectance anisotropy for cloud and NO2 retrievals from GOME-2 and OMI , 2018, Atmospheric Measurement Techniques.

[22]  J. Burrows,et al.  A study of the approaches used to retrieve aerosol extinction, as applied to limb observations made by OSIRIS and SCIAMACHY , 2018, Atmospheric Measurement Techniques.

[23]  I. Maslov,et al.  Investigations of the Background Stratospheric Aerosol Using Multicolor Wide-Angle Measurements of the Twilight Glow Background , 2018 .

[24]  H. Bovensmann,et al.  Aerosol particle size distribution in the stratosphere retrieved from SCIAMACHY limb measurements , 2017 .

[25]  E. Guilyardi,et al.  Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa , 2017, Nature Communications.

[26]  Larry W. Thomason,et al.  A global space-based stratospheric aerosol climatology: 1979–2016 , 2017 .

[27]  B. Stevens,et al.  Easy Volcanic Aerosol (EVA v1.0): an idealized forcing generator for climate simulations , 2016 .

[28]  M. Vuille,et al.  Hemispherically asymmetric volcanic forcing of tropical hydroclimate duringthe last millennium , 2016 .

[29]  J. Grooß,et al.  Chemical analysis of refractory stratospheric aerosol particles collected within the arctic vortex and inside polar stratospheric clouds , 2016 .

[30]  C. Timmreck,et al.  Stratospheric aerosol—Observations, processes, and impact on climate , 2016 .

[31]  Bin Wang,et al.  Global monsoon precipitation responses to large volcanic eruptions , 2016, Scientific Reports.

[32]  A. Schmidt,et al.  Global volcanic aerosol properties derived from emissions, 1990–2014, using CESM1(WACCM) , 2016 .

[33]  Larry W. Thomason,et al.  Improved stratospheric aerosol extinction profiles from SCIAMACHY: validation and sample results , 2015 .

[34]  R. Caballero,et al.  Impacts of high-latitude volcanic eruptions on ENSO and AMOC , 2015, Proceedings of the National Academy of Sciences.

[35]  T. Deshler,et al.  On the accuracy of stratospheric aerosol extinction derived from in situ size distribution measurements and surface area density derived from remote SAGE II and HALOE extinction measurements , 2015 .

[36]  M Höpfner,et al.  Stratospheric sulfur and its implications for radiative forcing simulated by the chemistry climate model EMAC , 2015, Journal of geophysical research. Atmospheres : JGR.

[37]  C. Timmreck,et al.  The impact of volcanic aerosol on the Northern Hemisphere stratospheric polar vortex: mechanisms and sensitivity to forcing structure , 2014 .

[38]  Robert Damadeo,et al.  SAGE version 7.0 algorithm: application to SAGE II , 2013 .

[39]  J. Sheng,et al.  Modeling the stratospheric warming following the Mt. Pinatubo eruption: uncertainties in aerosol extinctions , 2013 .

[40]  G. Hegerl,et al.  The effect of volcanic eruptions on global precipitation , 2013 .

[41]  D. Degenstein,et al.  Stratospheric aerosol particle size information in Odin-OSIRIS limb scatter spectra , 2013 .

[42]  D. MacMartin,et al.  Studying geoengineering with natural and anthropogenic analogs , 2013, Climatic Change.

[43]  E. J. Llewellyn,et al.  OSIRIS A Decade of Scattered Light , 2012 .

[44]  J. Lelieveld,et al.  The role of carbonyl sulphide as a source of stratospheric sulphate aerosol and its impact on climate , 2011 .

[45]  S. Petelina,et al.  Transport and evolution of the 2009 Australian Black Saturday bushfire smoke in the lower stratosphere observed by OSIRIS on Odin , 2011 .

[46]  R. Grainger,et al.  Optimal estimation retrieval of aerosol microphysical properties from SAGE~II satellite observations in the volcanically unperturbed lower stratosphere , 2010 .

[47]  M. Pitts,et al.  An evaluation of the SAGE III version 4 aerosol extinction coefficient and water vapor data products , 2009 .

[48]  E. J. Llewellyn,et al.  Retrieval of stratospheric aerosol size information from OSIRIS limb scattered sunlight spectra , 2008 .

[49]  T. Deshler A review of global stratospheric aerosol: Measurements, importance, life cycle, and local stratospheric aerosol , 2008 .

[50]  J. M. Reeves,et al.  Comparison of aerosol extinction coefficients, surface area density, and volume density from SAGE II and in situ aircraft measurements , 2008 .

[51]  L. Thomason,et al.  SAGE II measurements of stratospheric aerosol properties at non-volcanic levels , 2007 .

[52]  T. Painter,et al.  Reflectance quantities in optical remote sensing - definitions and case studies , 2006 .

[53]  H. Jäger,et al.  Trends in the nonvolcanic component of stratospheric aerosol over the period 1971–2004 , 2006 .

[54]  J. Wilson,et al.  M7: An efficient size‐resolved aerosol microphysics module for large‐scale aerosol transport models , 2004 .

[55]  E. J. Llewellyn,et al.  The OSIRIS instrument on the Odin spacecraft , 2004 .

[56]  D. Fussen,et al.  A global climatology of stratospheric aerosol size distribution parameters derived from SAGE II data over the period 1984–2000: 1. Methodology and climatological observations , 2004 .

[57]  J. Liley,et al.  Thirty years of in situ stratospheric aerosol size distribution measurements from Laramie, Wyoming (41°N), using balloon‐borne instruments , 2003 .

[58]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[59]  Alan H. Strahler,et al.  An algorithm for the retrieval of albedo from space using semiempirical BRDF models , 2000, IEEE Trans. Geosci. Remote. Sens..

[60]  D. Fussen,et al.  A volcanism dependent model for the extinction profile of stratospheric aerosols in the UV‐visible range , 1999 .

[61]  Charles Thomas McElroy,et al.  Observations of Stratospheric Aerosol Using CPFM Polarized Limb Radiances , 1999 .

[62]  M. Buchwitz,et al.  SCIAMACHY: Mission Objectives and Measurement Modes , 1999 .

[63]  Larry W. Thomason,et al.  Radiative forcing from the 1991 Mount Pinatubo volcanic eruption , 1998 .

[64]  P. Koepke,et al.  Optical Properties of Aerosols and Clouds: The Software Package OPAC , 1998 .

[65]  M. Mishchenko,et al.  Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight , 1997 .

[66]  P. Forster,et al.  Radiative forcing , 1997 .

[67]  R. Garcia,et al.  The role of aerosol variations in anthropogenic ozone depletion at northern midlatitudes , 1996 .

[68]  Raymond R. Roberts,et al.  IAN-USA SAGE III/Meteor-3M project , 1996 .

[69]  M. McCormick,et al.  Atmospheric effects of the Mt Pinatubo eruption , 1995, Nature.

[70]  L. Thomason,et al.  Use of stratospheric aerosol properties as diagnostics of Antarctic vortex processes , 1993 .

[71]  S. Wofsy,et al.  In situ measurements constraining the role of sulphate aerosols in mid-latitude ozone depletion , 1993, Nature.

[72]  John P. Burrows,et al.  SCIAMACHY—scanning imaging absorption spectrometer for atmospheric chartography , 1992 .

[73]  William P. Chu,et al.  Stratospheric aerosol and gas experiment III: aerosol and trace gas measurements for the Earth Observing System , 1991, Defense, Security, and Sensing.

[74]  L. E. Mauldin,et al.  Stratospheric Aerosol And Gas Experiment II Instrument: A Functional Description , 1985 .

[75]  G. Yue,et al.  Retrieval of stratospheric aerosol size distribution from atmospheric extinction of solar radiation at two wavelengths. , 1983, Applied optics.

[76]  Anders Ångström,et al.  On the Atmospheric Transmission of Sun Radiation and on Dust in the Air , 1929 .

[77]  R. Engelmann,et al.  Smoke of extreme Australian bushfires observed in the stratosphere over Punta Arenas, Chile, in January 2020: optical thickness, lidar ratios, and depolarization ratios at 355 and 532 nm , 2020 .

[78]  C. von Savigny,et al.  Issues related to the retrieval of stratospheric aerosol particle size information based on optical measurements , 2019 .

[79]  A. Kokhanovsky,et al.  Radiative transfer through terrestrial atmosphere and ocean: Software package SCIATRAN , 2014 .

[80]  Heinrich Bovensmann,et al.  SCIAMACHY - Exploring the Changing Earth's Atmosphere , 2011 .

[81]  J. Grieser,et al.  Parameterization of Spatio-temporal Patterns of Volcanic Aerosol Induced Stratospheric Optical Depth and its Climate Radiative Forcing , 1999 .

[82]  Gabriel D. Warshaw,et al.  Optical Design and Performance of the Odin UV/Visible Spectrograph and Infrared Imager Instrument , 1996 .

[83]  M. P. McCormick,et al.  Sage II: An overview , 1987 .

[84]  H. M. Steele,et al.  Effects of temperature and humidity on the growth and optical properties of sulphuric acid—water droplets in the stratosphere , 1981 .

[85]  Liu Xinwu This is How the Discussion Started , 1981 .

[86]  K. F. Palmer,et al.  Optical constants of sulfuric Acid; application to the clouds of venus? , 1975, Applied optics.