Transformation of organic compounds by fungal spores.

Publisher Summary The capacity of microorganisms to synthesize rapidly large quantities of protoplasm and reserve materials and to secrete a large variety of useful metabolites has led to industrial processes that can be classified arbitrarily into three categories. Microorganisms are grown on suitable media and harvested for their cells or for their reserve materials for different purposes such as the production of yeasts destined for bakery and the preparation of microbial fats, carbohydrates, and proteins for human and animal consumption. Microorganisms are also cultivated for the valuable excretory metabolites they sometimes accumulate, such as alcohols, organic acids, vitamins, antibiotics, and enzymes. The scope of this review is to describe the “spore process” as applied to the transformation of steroids and some other organic compounds and to point out factors involved in the production of sufficient quantities of spores. Although this process has been studied mainly for fungal spores, it can also be applied to the spores of certain streptomycetes.

[1]  W. C. McMurray,et al.  Antibiotics as tools for metabolic studies. I. A survey of toxic antibiotics in respiratory, phosphorylative and glycolytic systems. , 1958, Archives of biochemistry and biophysics.

[2]  R. Marchant,et al.  The carbon metabolism and swelling of Fusarium culmorum conidia. , 1967 .

[3]  H. B. Woodruff,et al.  Microbiological Aspects of Penicillin , 1945, Journal of bacteriology.

[4]  V. W. Cochrane,et al.  SPORE GERMINATION AND CARBON METABOLISM IN FUSARIUM SOLANI. II. ENDOGENOUS RESPIRATION IN RELATION TO GERMINATION , 1963 .

[5]  V. W. Cochrane,et al.  SPORE GERMINATION AND CARBON METABOLISM IN FUSARIUM SOLANI IV , 1963, Journal of bacteriology.

[6]  H. Koch,et al.  Totalsynthese optisch aktiver Steroide, I. Mikrobiologische stereospezifische Reduktion von 3‐Methoxy‐8.14‐seco‐1.3.5(10).9‐östratetraen‐14.17‐dion , 1967 .

[7]  E. Stapley,et al.  Hydroxylation of Steroids, Principally Progesterone, by a Strain of Aspergillus Ochraceus , 1955 .

[8]  R. Gehrig,et al.  Formation of Ketones from Fatty Acids by Spores of Penicillium roqueforti , 1958, Nature.

[9]  S. Sehgal,et al.  Large-scale transformation of steroids by fungal spores. , 1968, Applied microbiology.

[10]  R. W. Tuveson,et al.  Glutamic acid dehydrogenases in quiescent and germinating conidia of Neurospora crassa. , 1967, Journal of general microbiology.

[11]  S. Sehgal,et al.  Sporulation of Filamentous Fungi in Submerged Culture , 1965 .

[12]  S. Sehgal,et al.  C-1-dehydrogenation of steroids by spores of septomyxa affinis , 1963 .

[13]  A. Weintraub,et al.  Microbiological Transformations of Steroids. XV. Tertiary Hydroxylation of Steroids by Fungi of the Order Mucorales1,2 , 1958 .

[14]  E. Meyers,et al.  Studies on the nutrition of Penicillium roqueforti. , 1958, Applied microbiology.

[15]  D. Gottlieb,et al.  Mode of action of antibiotics. I. Site of action of ascosin. , 1961, Biochimica et biophysica acta.

[16]  G. A. Ledingham,et al.  The relation of self-inhibition of germination to the oxidative metabolism of stem rust uredospores. , 1959, Canadian journal of microbiology.

[17]  S. Sehgal,et al.  Transformation of reichstein's compound “S” with didymella lycopersici , 1963 .

[18]  S. Knight,et al.  A new pathway of pentose metabolism. , 1960, Biochemical and biophysical research communications.

[19]  A. Samšiňáková Growth and sporulation of submersed cultures of the fungus Beauveria bassiana in various media , 1966 .

[20]  S. Sehgal,et al.  Transformation of steroids by spores of microorganisms. I. Hydroxylation of progesterone by conidia of Aspergillus ochraceus. , 1963, Applied microbiology.

[21]  T. Stoudt The Microbiological Transformation of Steroids , 1960 .

[22]  R. Gehrig,et al.  Fatty acid oxidation by spores of Penicillium roqueforti. , 1963, Applied microbiology.

[23]  A. Sussman,et al.  DEVELOPMENT OF TREHALASE AND INVERTASE ACTIVITY IN NEUROSPORA , 1964, Journal of bacteriology.

[24]  S. Sehgal,et al.  Transformation of steroids by Mucor griseo-cyanus. , 1967, Canadian journal of microbiology.

[25]  G. Turian,et al.  Lipid Content of Conidia of Neurospora crassa , 1967, Nature.

[26]  J. V. Van Etten,et al.  Changes in Fungi with Age II. Respiration and Respiratory Enzymes of Rhizoctonia solani and Sclerotium bataticola , 1966, Journal of bacteriology.

[27]  S. Sehgal,et al.  11α-Hydroxylation of steroids by spores of Aspergillus ochraceus , 1968 .

[28]  S. Rakhit,et al.  Mechanism of side-chain degradation of C21 steroids by spores of Septomyxa affinis. , 1967, Biochimica et biophysica acta.

[29]  D. Gottlieb,et al.  Mode of action of antibiotics. II. Specificity of action of antimycin A and ascosin. , 1961, Biochimica et biophysica acta.

[30]  A. Morton The induction of sporulation in mould fungi , 1961, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[31]  V. W. Cochrane,et al.  Spore Germination and Carbon Metabolism in Fusarium solani V. Changes in Anaerobic Metabolism and Related Enzyme Activities during Development. , 1966, Plant physiology.

[32]  R. C. Lawrence The oxidation of fatty acids by spores of penicillium roqueforti. , 1966, Journal of general microbiology.

[33]  S. Knight,et al.  The Hydroxylation of Progesterone by Conidia from Aspergillus ochraceus , 1962 .

[34]  D. Perlman,et al.  Effect of antibiotics on oxidation of progesterone by two streptomycetes. , 1957, Canadian journal of microbiology.

[35]  S. Sehgal,et al.  TRANSFORMATION OF REICHSTEIN'S COMPOUND 'S' AND OXIDATION OF CARBOHYDRATES BY SPORES OF SEPTOMYXA AFFINIS. , 1965, Canadian Journal of Microbiology (print).

[36]  T. Yanagita,et al.  PHYSIOLOGICAL AND BIOCHEMICAL STUDIES ON THE LONGEVITY OF ASPERGILLUS ORYZAE CONIDIA STORED UNDER VARIOUS ENVIRONMENTAL CONDITIONS , 1966 .

[37]  C. Casas-Campillo,et al.  Microbiological aspects in the hydroxylation of estrogens by Fusarium moniliforme. , 1965, Applied microbiology.

[38]  R. Deghenghi,et al.  Antiinflammatory Δ4-Pregnenolone Derivatives , 1966 .

[39]  S. Knight TRANSFORMATION: A UNIQUE ENZYMATIC ACTIVITY OF MOLD SPORES AND MYCELIUM , 1966, Annals of the New York Academy of Sciences.

[40]  R. C. Lawrence The metabolism of triglycerides by spores of Penicillium roqueforti. , 1967, Journal of general microbiology.

[41]  E. B. Fred,et al.  Maintenance of Vigorous Mold Stock Cultures , 1934 .

[42]  G. Rolinson,et al.  6-Aminopenicillanic acid I. 6-Aminopenicillanic acid in penicillin fermentations , 1961, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[43]  E. Meyers,et al.  Studies on the Intracellular Amino Acids of Penicillium Roqueforti , 1961 .

[44]  K. Raper,et al.  Preservation of Molds by the Lyophil Process , 1945 .

[45]  S. Knight,et al.  Formation of 2-Heptanone from Caprylic Acid by Spores of Various Filamentous Fungi , 1961, Nature.