Improving on the Independent Metropolis-Hastings algorithm
暂无分享,去创建一个
[1] R. Tweedie,et al. Rates of convergence of the Hastings and Metropolis algorithms , 1996 .
[2] Jun S. Liu,et al. Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes , 1994 .
[3] G. Casella,et al. Rao-Blackwellisation of sampling schemes , 1996 .
[4] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[5] Adrian F. M. Smith,et al. Sampling-Based Approaches to Calculating Marginal Densities , 1990 .
[6] F Perron. Beyond accept-reject sampling , 1999 .
[7] R. Kass. Nonlinear Regression Analysis and its Applications , 1990 .
[8] Joseph G. Ibrahim,et al. Monte Carlo Methods in Bayesian Computation , 2000 .
[9] G. Roberts,et al. Adaptive Markov Chain Monte Carlo through Regeneration , 1998 .
[10] M. Newton. Approximate Bayesian-inference With the Weighted Likelihood Bootstrap , 1994 .
[11] J. Rosenthal,et al. Geometric Ergodicity and Hybrid Markov Chains , 1997 .
[12] Jun S. Liu,et al. Monte Carlo strategies in scientific computing , 2001 .
[13] Barnes. Discussion of the Paper , 1961, Public health papers and reports.