Strong Positive Selection Biases Identity-By-Descent-Based Inferences of Recent Demography and Population Structure in Plasmodium falciparum

Malaria genomic surveillance often estimates parasite genetic relatedness using metrics such as Identity-By-Decent (IBD). Yet, strong positive selection stemming from antimalarial drug resistance or other interventions may bias IBD-based estimates. In this study, we utilized simulations, a true IBD inference algorithm, and empirical datasets from different malaria transmission settings to investigate the extent of such bias and explore potential correction strategies. We analyzed whole genome sequence data generated from 640 new and 4,026 publicly available Plasmodium falciparum clinical isolates. Our findings demonstrated that positive selection distorts IBD distributions, leading to underestimated effective population size and blurred population structure. Additionally, we discovered that the removal of IBD peak regions partially restored the accuracy of IBD-based inferences, with this effect contingent on the population’s background genetic relatedness. Consequently, we advocate for selection correction for parasite populations undergoing strong, recent positive selection, particularly in high malaria transmission settings.

[1]  Diego F. Echeverry,et al.  Pf7: an open dataset of Plasmodium falciparum genome variation in 20,000 worldwide samples , 2023, Wellcome open research.

[2]  D. Zhi,et al.  Open-source benchmarking of IBD segment detection methods for biobank-scale cohorts , 2022, GigaScience.

[3]  C. Buckee,et al.  Measurably recombining malaria parasites , 2022, Trends in parasitology.

[4]  Maosheng Huang,et al.  Uncovering the extensive trade-off between adaptive evolution and disease susceptibility. , 2022, Cell reports.

[5]  D. Reich,et al.  Haplotype-based inference of recent effective population size in modern and ancient DNA samples , 2022, bioRxiv.

[6]  L. Childs,et al.  Declines in prevalence alter the optimal level of sexual investment for the malaria parasite Plasmodium falciparum , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Yilong Zhang,et al.  Evaluations of candidate markers of dihydroartemisinin-piperaquine resistance in Plasmodium falciparum isolates from the China–Myanmar, Thailand–Myanmar, and Thailand–Cambodia borders , 2022, Parasites & vectors.

[8]  Diego F. Echeverry,et al.  Resolving drug selection and migration in an inbred South American Plasmodium falciparum population with identity-by-descent analysis , 2022, bioRxiv.

[9]  A. Caballero,et al.  The estimates of effective population size based on linkage disequilibrium are virtually unaffected by natural selection , 2022, PLoS genetics.

[10]  W. Babik,et al.  Navigating the temporal continuum of effective population size , 2021 .

[11]  Kevin R. Thornton,et al.  Efficient ancestry and mutation simulation with msprime 1.0 , 2021, bioRxiv.

[12]  Danny S. Park,et al.  Toward a fine-scale population health monitoring system , 2021, Cell.

[13]  Fergus R. Cooper,et al.  Identity-by-descent detection across 487,409 British samples reveals fine scale population structure and ultra-rare variant associations , 2020, Nature Communications.

[14]  Diego F. Echeverry,et al.  Identity-by-descent with uncertainty characterises connectivity of Plasmodium falciparum populations on the Colombian-Pacific coast , 2020, PLoS genetics.

[15]  Brian L. Browning,et al.  Probabilistic Estimation of Identity by Descent Segment Endpoints and Detection of Recent Selection , 2020, bioRxiv.

[16]  A. Pardiñas,et al.  Recent demographic history inferred by high-resolution analysis of linkage disequilibrium. , 2020, Molecular biology and evolution.

[17]  D. Fidock,et al.  Local emergence in Amazonia of Plasmodium falciparum k13 C580Y mutants associated with in vitro artemisinin resistance , 2020, eLife.

[18]  Manuel Llinás,et al.  Dissecting the role of PfAP2-G in malaria gametocytogenesis , 2020, Nature Communications.

[19]  B. Charlesworth,et al.  Toward an Evolutionarily Appropriate Null Model: Jointly Inferring Demography and Purifying Selection , 2020, Genetics.

[20]  B. Bergmann,et al.  A Kelch13-defined endocytosis pathway mediates artemisinin resistance in malaria parasites , 2020, Science.

[21]  T. Anderson,et al.  Co-transmission of Related Malaria Parasite Lineages Shapes Within-Host Parasite Diversity. , 2019, Cell host & microbe.

[22]  Ying Zhou,et al.  A fast and simple method for detecting identity by descent segments in large-scale data , 2019, bioRxiv.

[23]  J. Bailey,et al.  Falciparum malaria from coastal Tanzania and Zanzibar remains highly connected despite effective control efforts on the archipelago , 2019, Malaria Journal.

[24]  D. Kwiatkowski,et al.  An open dataset of Plasmodium falciparum genome variation in 7,000 worldwide samples , 2019, bioRxiv.

[25]  Yong Zi Tan,et al.  Structure and Drug Resistance of the Plasmodium falciparum Transporter PfCRT , 2019, Nature.

[26]  Anita Ghansah,et al.  Major subpopulations of Plasmodium falciparum in sub-Saharan Africa , 2019, Science.

[27]  D. Fidock,et al.  Accelerated evolution and spread of multidrug-resistant Plasmodium falciparum takes down the latest first-line antimalarial drug in southeast Asia , 2019, The Lancet. Infectious diseases.

[28]  D. Kwiatkowski,et al.  Emergence of artemisinin-resistant Plasmodium falciparum with kelch13 C580Y mutations on the island of New Guinea , 2019, bioRxiv.

[29]  Gil McVean,et al.  Inferring whole-genome histories in large population datasets , 2019, Nature Genetics.

[30]  Joana C. Silva,et al.  Genomic structure and diversity of Plasmodium falciparum in Southeast Asia reveal recent parasite migration patterns , 2019, Nature Communications.

[31]  Richard J Maude,et al.  Evolution and expansion of multidrug-resistant malaria in southeast Asia: a genomic epidemiology study , 2019, bioRxiv.

[32]  Caroline O. Buckee,et al.  Estimating Relatedness Between Malaria Parasites , 2019, Genetics.

[33]  Philipp W. Messer,et al.  Tree‐sequence recording in SLiM opens new horizons for forward‐time simulation of whole genomes , 2019, Molecular ecology resources.

[34]  D. Petkova,et al.  Estimating recent migration and population-size surfaces , 2018, bioRxiv.

[35]  Philipp W. Messer,et al.  SLiM 3: Forward Genetic Simulations Beyond the Wright–Fisher Model , 2018, bioRxiv.

[36]  Gil McVean,et al.  The origins and relatedness structure of mixed infections vary with local prevalence of P. falciparum malaria , 2018, bioRxiv.

[37]  Brian L. Browning,et al.  A one penny imputed genome from next generation reference panels , 2018, bioRxiv.

[38]  T. O’Connor,et al.  Evolutionary genomic dynamics of Peruvians before, during, and after the Inca Empire , 2018, Proceedings of the National Academy of Sciences.

[39]  Melanie Bahlo,et al.  Identity-by-descent analyses for measuring population dynamics and selection in recombining pathogens , 2018, PLoS genetics.

[40]  Caroline O Buckee,et al.  Mapping malaria by combining parasite genomic and epidemiologic data , 2018, bioRxiv.

[41]  S. Avery,et al.  Heterologous Expression of a Novel Drug Transporter from the Malaria Parasite Alters Resistance to Quinoline Antimalarials , 2018, Scientific Reports.

[42]  Kevin R. Thornton,et al.  Efficient pedigree recording for fast population genetics simulation , 2018, bioRxiv.

[43]  Caroline O Buckee,et al.  Quantifying connectivity between local Plasmodium falciparum malaria parasite populations using identity by descent , 2017, PLoS genetics.

[44]  S. Schaffner,et al.  hmmIBD: software to infer pairwise identity by descent between haploid genotypes , 2017, bioRxiv.

[45]  D. Fidock,et al.  Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic , 2017, Nature Medicine.

[46]  S. Glémin,et al.  The Evolutionary Interplay between Adaptation and Self-Fertilization , 2017, Trends in genetics : TIG.

[47]  Mehul Dhorda,et al.  The spread of artemisinin-resistant Plasmodium falciparum in the Greater Mekong subregion: a molecular epidemiology observational study , 2017, The Lancet. Infectious diseases.

[48]  Gil McVean,et al.  Deconvolution of multiple infections in Plasmodium falciparum from high throughput sequencing data , 2017, bioRxiv.

[49]  Ross E. Curtis,et al.  Clustering of 770,000 genomes reveals post-colonial population structure of North America , 2017, Nature Communications.

[50]  Kay Prüfer,et al.  Detecting ancient positive selection in humans using extended lineage sorting , 2016, bioRxiv.

[51]  François Nosten,et al.  Longitudinal genomic surveillance of Plasmodium falciparum malaria parasites reveals complex genomic architecture of emerging artemisinin resistance , 2017, Genome Biology.

[52]  F. Nosten,et al.  Population Parameters Underlying an Ongoing Soft Sweep in Southeast Asian Malaria Parasites , 2016, Molecular biology and evolution.

[53]  Saorin Kim,et al.  Plasmodium falciparum parasite population structure and gene flow associated to anti-malarial drugs resistance in Cambodia , 2016, Malaria Journal.

[54]  Saorin Kim,et al.  Plasmodium falciparum parasite population structure and gene flow associated to anti-malarial drugs resistance in Cambodia , 2016, Malaria Journal.

[55]  Scott M. Williams,et al.  The Great Migration and African-American Genomic Diversity , 2015, bioRxiv.

[56]  Brian L Browning,et al.  Accurate Non-parametric Estimation of Recent Effective Population Size from Segments of Identity by Descent. , 2015, American journal of human genetics.

[57]  M. Cugmas,et al.  On comparing partitions , 2015 .

[58]  Mario Barbato,et al.  SNeP: a tool to estimate trends in recent effective population size trajectories using genome-wide SNP data , 2015, Front. Genet..

[59]  John C. Tan,et al.  Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. , 2015, The Journal of infectious diseases.

[60]  Gilean McVean,et al.  Genetic architecture of artemisinin-resistant Plasmodium falciparum , 2015, Nature Genetics.

[61]  D. Kwiatkowski,et al.  Spread of artemisinin resistance in Plasmodium falciparum malaria. , 2014, The New England journal of medicine.

[62]  P. Wilairat,et al.  Origin of robustness in generating drug-resistant malaria parasites. , 2014, Molecular biology and evolution.

[63]  Gilean McVean,et al.  Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia , 2013, Nature Genetics.

[64]  Geoffrey L. Johnston,et al.  Mitotic Evolution of Plasmodium falciparum Shows a Stable Core Genome but Recombination in Antigen Families , 2013, PLoS genetics.

[65]  Joana C. Silva,et al.  Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in Southeast Asia , 2012, Proceedings of the National Academy of Sciences.

[66]  Brian L Browning,et al.  Identity by descent between distant relatives: detection and applications. , 2012, Annual review of genetics.

[67]  I. Pe’er,et al.  Length distributions of identity by descent reveal fine-scale demographic history. , 2012, American journal of human genetics.

[68]  Peter L. Ralph,et al.  The Geography of Recent Genetic Ancestry across Europe , 2012, PLoS biology.

[69]  Qiang Fang,et al.  Malaria in the Greater Mekong Subregion: heterogeneity and complexity. , 2012, Acta tropica.

[70]  Taane G. Clark,et al.  Characterization of Within-Host Plasmodium falciparum Diversity Using Next-Generation Sequence Data , 2012, PloS one.

[71]  B. Browning,et al.  A fast, powerful method for detecting identity by descent. , 2011, American journal of human genetics.

[72]  B. Greenwood Anti-malarial drugs and the prevention of malaria in the population of malaria endemic areas , 2010, Malaria Journal.

[73]  F. Russel,et al.  The ABCs of multidrug resistance in malaria. , 2010, Trends in parasitology.

[74]  Anders Albrechtsen,et al.  Natural Selection and the Distribution of Identity-by-Descent in the Human Genome , 2010, Genetics.

[75]  Carl T. Bergstrom,et al.  The map equation , 2009, 0906.1405.

[76]  S. Kano,et al.  Differences in genetic population structures of Plasmodium falciparum isolates from patients along Thai-Myanmar border with severe or uncomplicated malaria , 2008, Malaria Journal.

[77]  S. Meshnick,et al.  Declining Artesunate-Mefloquine Efficacy against Falciparum Malaria on the Cambodia–Thailand Border , 2008, Emerging infectious diseases.

[78]  Yun S. Song,et al.  The Hitchhiking Effect on Linkage Disequilibrium Between Linked Neutral Loci , 2006, Genetics.

[79]  I. Hastings The origins of antimalarial drug resistance. , 2004, Trends in parasitology.

[80]  Kiaran Kirk,et al.  The malaria parasite's chloroquine resistance transporter is a member of the drug/metabolite transporter superfamily. , 2004, Molecular biology and evolution.

[81]  Nicholas J White,et al.  Antimalarial drug resistance. , 2004, The Journal of clinical investigation.

[82]  T. Anderson Mapping drug resistance genes in Plasmodium falciparum by genome-wide association. , 2004, Current drug targets. Infectious disorders.

[83]  Peter Beerli,et al.  Early Origin and Recent Expansion of Plasmodium falciparum , 2003, Science.

[84]  M. Bamshad,et al.  Signatures of natural selection in the human genome , 2003, Nature Reviews Genetics.

[85]  Pardis C Sabeti,et al.  Detecting recent positive selection in the human genome from haplotype structure , 2002, Nature.

[86]  John C. Wootton,et al.  Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum , 2002, Nature.

[87]  D. Gudbjartsson,et al.  A high-resolution recombination map of the human genome , 2002, Nature Genetics.

[88]  D. Conway,et al.  High recombination rate in natural populations of Plasmodium falciparum. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[89]  J. E. Hyde,et al.  Sequence variation of the hydroxymethyldihydropterin pyrophosphokinase: dihydropteroate synthase gene in lines of the human malaria parasite, Plasmodium falciparum, with differing resistance to sulfadoxine. , 1994, European journal of biochemistry.

[90]  D. Mccormick Sequence the Human Genome , 1986, Bio/Technology.

[91]  Sewall Wright,et al.  Coefficients of Inbreeding and Relationship , 1922, The American Naturalist.

[92]  R. Cibulskis,et al.  World Malaria Report 2013 , 2014 .

[93]  Skipper Seabold,et al.  Statsmodels: Econometric and Statistical Modeling with Python , 2010, SciPy.

[94]  M. Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[95]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .