Understanding a Bisferrocene Molecular QCA Wire

Molecular QCA are considered among the most promising beyond CMOS devices. Frequency as well as self-assembly characteristics are the features that make them most attractive. Several challenges restrain them for being exploited from a practical point of view in the near future, not only for the difficulties at the technological level, but for the inappropriateness of the tools used when studying and predicting their behavior.

[1]  Mariagrazia Graziano,et al.  Magnetic dipolar coupling and collective effects for binary information codification in cost-effective logic devices , 2012 .

[2]  Yuhui Lu,et al.  Self-doping of molecular quantum-dot cellular automata: mixed valence zwitterions. , 2011, Physical chemistry chemical physics : PCCP.

[3]  Jieying Jiao,et al.  Properties of a mixed-valence (Fe(II))2(Fe(III))2 square cell for utilization in the quantum cellular automata paradigm for molecular electronics. , 2005, Journal of the American Chemical Society.

[4]  Mariagrazia Graziano,et al.  Asynchrony in Quantum-Dot Cellular Automata Nanocomputation: Elixir or Poison? , 2011, IEEE Design & Test of Computers.

[5]  Mariagrazia Graziano,et al.  Asynchronous Solutions for Nanomagnetic Logic Circuits , 2011, JETC.

[6]  M. Zamboni,et al.  Majority Voter Full Characterization for Nanomagnet Logic Circuits , 2012, IEEE Transactions on Nanotechnology.

[7]  Mariagrazia Graziano,et al.  A technology aware magnetic QCA NCL-HDL architecture , 2009, 2009 9th IEEE Conference on Nanotechnology (IEEE-NANO).

[8]  P. Kollman,et al.  An approach to computing electrostatic charges for molecules , 1984 .

[9]  Natalie A. Wasio,et al.  Through-bond versus through-space coupling in mixed-valence molecules: observation of electron localization at the single-molecule scale. , 2012, Journal of the American Chemical Society.

[10]  Rebecca C. Quardokus,et al.  Charge localization in isolated mixed-valence complexes: an STM and theoretical study. , 2010, Journal of the American Chemical Society.

[11]  A. Pulimeno,et al.  Molecule interaction for QCA computation , 2012, 2012 12th IEEE International Conference on Nanotechnology (IEEE-NANO).

[12]  Jing Ma,et al.  Electron switch in the double-cage fluorinated fullerene anions, e(-)@C20F18(XH)2C20F18 (X = N, B): new candidates for molecular quantum-dot cellular automata. , 2011, Physical chemistry chemical physics : PCCP.

[13]  C. Lent,et al.  Molecular quantum-dot cellular automata , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[14]  M. Ottavi,et al.  Clocking and Cell Placement for QCA , 2006, 2006 Sixth IEEE Conference on Nanotechnology.

[15]  Luca Zoli Active bis-ferrocene molecules as unit for molecular computation , 2010 .

[16]  Wolfgang Porod,et al.  Quantum cellular automata , 1994 .

[17]  Leo Gross,et al.  Imaging the charge distribution within a single molecule. , 2012, Nature nanotechnology.

[18]  C. Lent,et al.  Clocking of molecular quantum-dot cellular automata , 2001 .

[19]  Craig S. Lent,et al.  Molecular quantum-dot cellular automata , 2003, 2006 IEEE Workshop on Signal Processing Systems Design and Implementation.

[20]  C. Lent,et al.  Molecular quantum-dot cellular automata , 2003 .

[21]  M. Zamboni,et al.  An NCL-HDL Snake-Clock-Based Magnetic QCA Architecture , 2011, IEEE Transactions on Nanotechnology.

[22]  C. Lent,et al.  Clocked molecular quantum-dot cellular automata , 2003 .

[23]  Mariagrazia Graziano,et al.  Towards a molecular QCA wire: Simulation of write-in and read-out systems , 2012 .

[24]  Gianluca Piccinini,et al.  Bis-Ferrocene Molecular QCA Wire: Ab Initio Simulations of Fabrication Driven Fault Tolerance , 2013, IEEE Transactions on Nanotechnology.

[25]  Craig S. Lent,et al.  Molecular quantum-dot cellular automata: From molecular structure to circuit dynamics , 2007 .

[26]  Lent,et al.  Theoretical study of molecular quantum dot cellular automata , 2004 .

[27]  C. Lent,et al.  Molecular quantum cellular automata cells. Electric field driven switching of a silicon surface bound array of vertically oriented two-dot molecular quantum cellular automata. , 2003, Journal of the American Chemical Society.

[28]  Massimo Marcaccio,et al.  Toward Quantum-dot Cellular Automata units: thiolated-carbazole linked bisferrocenes. , 2012, Nanoscale.

[29]  Jin Wen,et al.  Exploring the Possibility of Noncovalently Surface Bound Molecular Quantum-Dot Cellular Automata: Theoretical Simulations of Deposition of Double-Cage Fluorinated Fullerenes on Ag(100) Surface , 2013 .

[30]  D. Demarchi,et al.  Molecular QCA: A write-in system based on electric fields , 2011, The 4th IEEE International NanoElectronics Conference.