Development of new scintillators for medical applications

[1]  A. Yoshikawa,et al.  Recent R&D Trends in Inorganic Single‐Crystal Scintillator Materials for Radiation Detection , 2015 .

[2]  Y. Ohashi,et al.  Alkali earth co-doping effects on luminescence and scintillation properties of Ce doped Gd 3 Al 2 Ga 3 O 12 scintillator , 2015 .

[3]  Roberto Cingolani,et al.  Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells. , 2014, Nature nanotechnology.

[4]  D. Ding,et al.  CsI:Tl+,Yb2+: ultra-high light yield scintillator with reduced afterglow , 2014 .

[5]  Paul Lecoq,et al.  Can Transient Phenomena Help Improving Time Resolution in Scintillators? , 2014, IEEE Transactions on Nuclear Science.

[6]  Pieter Dorenbos,et al.  Co-doping of CeBr3 scintillator detectors for energy resolution enhancement , 2014 .

[7]  K. Blažek,et al.  Development of LuAG-based scintillator crystals – A review , 2013 .

[8]  Nassir Navab,et al.  EndoTOFPET-US a novel multimodal tool for endoscopy and Positron Emission Tomography , 2012, 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC).

[9]  W. W. Moses,et al.  The Origins of Scintillator Non-Proportionality , 2012, IEEE Transactions on Nuclear Science.

[10]  M. Bandstra,et al.  Measurements of Fukushima fallout by the Berkeley Radiological Air and Water Monitoring project , 2011, 2011 IEEE Nuclear Science Symposium Conference Record.

[11]  L. Eriksson,et al.  The Effect of ${\hbox {Ca}}^{2+}$ Codoping on Shallow Traps in YSO:Ce Scintillators , 2009, IEEE Transactions on Nuclear Science.

[12]  S. Shimizu,et al.  60 mm Diameter Lu$_{0.4}$ Gd$_{1.6}$SiO$_{5}$: Ce (LGSO) Single Crystals and Their Improved Scintillation Properties , 2007, IEEE Transactions on Nuclear Science.

[13]  D. Jiang,et al.  La_2Hf_2O_7:Ti^4+ ceramic scintillator for x-ray imaging , 2005 .

[14]  P. Lecoq,et al.  Advances in the scintillation performance of LuYAP:Ce single crystals , 2005 .

[15]  S. B. Mikhrin,et al.  Luminescence properties of ceramics based on terbium-doped gadolinium oxysulfide , 2003 .

[16]  P. Lecoq,et al.  Intrinsic energy resolution and light output of the Lu0.7Y0.3AP:Ce scintillator , 2002 .

[17]  P. Dorenbos,et al.  High-energy-resolution scintillator: Ce3+ activated LaBr3 , 2000 .

[18]  D. Vaisburd,et al.  Two types of fundamental luminescence of ionization-passive electrons and holes in optical dielectrics—Intraband-electron and interband-hole luminescence (theoretical calculation and comparison with experiment) , 1997 .

[19]  B. C. Grabmaier,et al.  Effect of Pr-codoping on the X-ray induced afterglow of (Y,Gd)2O3:Eu , 1995 .

[20]  Charles L. Melcher,et al.  A promising new scintillator: cerium-doped lutetium oxyorthosilicate , 1992 .

[21]  R. Hofstadter,et al.  SCINTILLATIONS IN THALLIUM-ACTIVATED CaI$sub 2$ AND CsI , 1951 .

[22]  R. Hofstadter The Detection of Gamma-Rays with Thallium-Activated Sodium Iodide Crystals , 1949 .

[23]  P. Dorenbos,et al.  Optical properties and defect structure of Sr2+ co-doped LaBr3:5%Ce scintillation crystals , 2014 .

[24]  Charles David Greskovich,et al.  Ceramic scintillators for advanced, medical X-ray detectors , 1992 .