Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis.

Interest in catalysis by metal nanoparticles (NPs) is increasing dramatically, as reflected by the large number of publications in the last five years. This field, "semi-heterogeneous catalysis", is at the frontier between homogeneous and heterogeneous catalysis, and progress has been made in the efficiency and selectivity of reactions and recovery and recyclability of the catalytic materials. Usually NP catalysts are prepared from a metal salt, a reducing agent, and a stabilizer and are supported on an oxide, charcoal, or a zeolite. Besides the polymers and oxides that used to be employed as standard, innovative stabilizers, media, and supports have appeared, such as dendrimers, specific ligands, ionic liquids, surfactants, membranes, carbon nanotubes, and a variety of oxides. Ligand-free procedures have provided remarkable results with extremely low metal loading. The Review presents the recent developments and the use of NP catalysis in organic synthesis, for example, in hydrogenation and C--C coupling reactions, and the heterogeneous oxidation of CO on gold NPs.

[1]  S. Ley,et al.  Recyclable polyurea-microencapsulated Pd(0) nanoparticles: an efficient catalyst for hydrogenolysis of epoxides. , 2003, Organic letters.

[2]  R. Crooks,et al.  Dendrimer-Encapsulated Pd Nanoparticles as Fluorous Phase-Soluble Catalysts , 2000 .

[3]  B. Gates,et al.  Observation of ligand effects during alkene hydrogenation catalysed by supported metal clusters , 2002, Nature.

[4]  T. Akita,et al.  Hydrogenation of 1,3-butadiene and of crotonaldehyde over highly dispersed Au catalysts , 2002 .

[5]  K. Philippot,et al.  Catalytic investigation of rhodium nanoparticles in hydrogenation of benzene and phenylacetylene , 2002 .

[6]  Y. Yao,et al.  Magnetic field induced optical transmission study in an iron nanoparticle ferrofluid , 1999 .

[7]  M. Reetz,et al.  Ligand-free Heck reactions using low Pd-loading. , 2004, Chemical communications.

[8]  C. Foss,et al.  Metal Nanoparticles: Synthesis, Characterization, and Applications , 2001 .

[9]  T. Nishimura,et al.  Pd(ii)-hydrotalcite-catalyzed oxidation of alcohols to aldehydes and ketones using atmospheric pressure of air. , 2001, The Journal of organic chemistry.

[10]  Weize Wu,et al.  Hydrogenation of olefins using ligand-stabilized palladium nanoparticles in an ionic liquid , 2003 .

[11]  Peter Claus,et al.  Identification of active sites in gold-catalyzed hydrogenation of acrolein. , 2003, Journal of the American Chemical Society.

[12]  S. Parker,et al.  Identification of surface states on finely divided supported palladium catalysts by means of inelastic incoherent neutron scattering. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[13]  K. Mori,et al.  Arylation of Olefin with Aryl Iodide Catalyzed by Palladium , 1971 .

[14]  C. Larpent,et al.  Catalytic Hydrogenations in Biphasic Liquid-Liquid Systems: Part 2: Utilization of Sulfonated Tripod Ligands for the Stabilization of Colloidal Rhodium Dispersions , 1988 .

[15]  Y. Kou,et al.  A General Method for Preparation of PVP-Stabilized Noble Metal Nanoparticles in Room Temperature Ionic Liquids , 2004 .

[16]  J. Dupont,et al.  Nanoscale Pt(0) particles prepared in imidazolium room temperature ionic liquids: synthesis from an organometallic precursor, characterization, and catalytic properties in hydrogenation reactions. , 2003, Inorganic chemistry.

[17]  Jinhua Chen,et al.  Electrodeposition of Pt–Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation , 2004 .

[18]  P. Chou,et al.  Synthesis, Characterization, and Highly Efficient Catalytic Reactivity of Suspended Palladium Nanoparticles , 2000 .

[19]  Lajos P. Balogh,et al.  Poly(Amidoamine) Dendrimer-Templated Nanocomposites. 1. Synthesis of Zerovalent Copper Nanoclusters , 1998 .

[20]  L. Prati,et al.  Application of gold catalysts to selective liquid phase oxidation , 2002 .

[21]  N. Toshima Colloidal Dispersion of Bimetallic Nanoparticles: Preparation, Structure and Catalysis , 1996 .

[22]  R. Crooks,et al.  Catalysis in supercritical CO2 using dendrimer-encapsulated palladium nanoparticles. , 2001, Chemical communications.

[23]  Z. Kiraly,et al.  Pd nanoparticles in hydrotalcite: mild and highly selective catalysts for alkyne semihydrogenation , 2003 .

[24]  N. Cioffi,et al.  Pd nanoparticles catalyzed stereospecific synthesis of beta-aryl cinnamic esters in ionic liquids. , 2003, The Journal of organic chemistry.

[25]  C. Ng,et al.  Deactivation of Gold Catalysts Supported on Sulfated TiO2-ZrO2 Mixed Oxides for CO Oxidation During Catalytic Decomposition of Chlorodifluoromethane (HCFC-22) , 2004 .

[26]  C. Wan,et al.  Synthesis of Ag/Pd nanoparticles via reactive micelles as templates and its application to electroless copper deposition. , 2004, Journal of colloid and interface science.

[27]  J. D. de Vries,et al.  Homogeneous Catalysis for the Production of Fine Chemicals. Palladium- and Nickel-Catalysed Aromatic Carbon–Carbon Bond Formation , 2002 .

[28]  K. Philippot,et al.  Surfactant-Stabilized Aqueous Iridium(0) Colloidal Suspension: An Efficient Reusable Catalyst for Hydrogenation of Arenes in Biphasic Media , 2004 .

[29]  Y. Shiraishi,et al.  Colloidal silver catalysts for oxidation of ethylene , 1999 .

[30]  D. Blackmond,et al.  Kinetic studies of Heck coupling reactions using palladacycle catalysts: experimental and kinetic modeling of the role of dimer species. , 2001, Journal of the American Chemical Society.

[31]  N. Pradhan,et al.  Catalytic Reduction of Aromatic Nitro Compounds by Coinage Metal Nanoparticles , 2001 .

[32]  M. El-Sayed,et al.  Effect of catalysis on the stability of metallic nanoparticles: Suzuki reaction catalyzed by PVP-palladium nanoparticles. , 2003, Journal of the American Chemical Society.

[33]  Jooho Moon,et al.  Preparation of Ag/SiO2 nanosize composites by a reverse micelle and sol-gel technique , 1999 .

[34]  Charles T. Campbell,et al.  The Active Site in Nanoparticle Gold Catalysis , 2004, Science.

[35]  N. Ichikuni,et al.  Preparation of Au/TiO2 catalysts by suspension spray reaction method and their catalytic property for CO oxidation , 2003 .

[36]  I. Beletskaya,et al.  NC-palladacycles as highly effective cheap precursors for the phosphine-free Heck reactions , 2001 .

[37]  Avelino Corma,et al.  Spectroscopic evidence for the supply of reactive oxygen during CO oxidation catalyzed by gold supported on nanocrystalline CeO2. , 2005, Journal of the American Chemical Society.

[38]  Tomokazu Yoshimura,et al.  Comparison of PAMAM-Au and PPI-Au nanocomposites and their catalytic activity for reduction of 4-nitrophenol. , 2002, Journal of colloid and interface science.

[39]  S. Lora,et al.  Polymer frameworks as templates for generating size-controlled metal nanoclusters: Active and reusable metal catalysts based on organic resins and on organic/inorganic composites , 2003 .

[40]  K. P. Jong,et al.  Synthesis of supported palladium catalysts , 2001 .

[41]  A. Kaifer,et al.  Tuning the Catalytic Activity of Cyclodextrin-Modified Palladium Nanoparticles through Host−Guest Binding Interactions , 2001 .

[42]  A. Chincarini,et al.  Palladium Nanoparticles Supported on Hyperbranched Aramids: Synthesis, Characterization, and Some Applications in the Hydrogenation of Unsaturated Substrates , 2003 .

[43]  P. Claus,et al.  Supported gold nanoparticles: in-depth catalyst characterization and application in hydrogenation and oxidation reactions , 2002 .

[44]  R. Finke,et al.  A More General Approach to Distinguishing "Homogeneous" from "Heterogeneous" Catalysis: Discovery of Polyoxoanion- and Bu4N+-Stabilized, Isolable and Redissolvable, High-Reactivity Ir.apprx.190-450 Nanocluster Catalysts , 1994 .

[45]  Chia-Min Yang,et al.  Gold nanoparticles in SBA-15 showing catalytic activity in CO oxidation , 2003 .

[46]  U. R. Pillai,et al.  Phenanthroline-stabilized palladium nanoparticles in polyethylene glycol—an active and recyclable catalyst system for the selective hydrogenation of olefins using molecular hydrogen , 2004 .

[47]  K. Köhler,et al.  Highly active palladium/activated carbon catalysts for Heck reactions: correlation of activity, catalyst properties, and Pd leaching. , 2002, Chemistry.

[48]  Nanostructured nickel-clusters as catalysts in [3+2]cycloaddition reactions , 1998 .

[49]  Aiqin Wang,et al.  Synergistic effect in an Au-Ag alloy nanocatalyst: CO oxidation. , 2005, The journal of physical chemistry. B.

[50]  F. Nord,et al.  Preparation of Palladium and Platinum Synthetic High Polymer Catalysts and the Relationship between Particle Size and Rate of Hydrogenation , 1941 .

[51]  J. Osuna,et al.  Silica-supported palladium nanoparticles show remarkable hydrogenation catalytic activity , 2003 .

[52]  D. Avnir,et al.  Catalytic hydrogenolysis of aromatic ketones by a sol-gel entrapped combined Pd-(Rh(cod)Cl) 2 catalyst , 2002 .

[53]  J. Gladysz,et al.  Highly active thermomorphic fluorous palladacycle catalyst precursors for the Heck reaction; evidence for a palladium nanoparticle pathway. , 2002, Organic letters.

[54]  M. Bäumer,et al.  Preparation and characterization of a model bimetallic catalyst: Co-Pd nanoparticles supported on Al2O3. , 2002, Angewandte Chemie.

[55]  M. Bruening,et al.  Selective hydrogenation by Pd nanoparticles embedded in polyelectrolyte multilayers. , 2004, Journal of the American Chemical Society.

[56]  Jun Hu,et al.  Synthesis and catalytic activity of a poly(N,N-dialkylcarbodiimide)/palladium nanoparticle composite: a case in the Suzuki coupling reaction using microwave and conventional heating. , 2004, Chemical communications.

[57]  E. McFarland,et al.  Gas-Phase Catalysis by Micelle Derived Au Nanoparticles on Oxide Supports , 2004 .

[58]  M. Haruta,et al.  Three-dimensional mesoporous titanosilicates prepared by modified sol-gel method: Ideal gold catalyst supports for enhanced propene epoxidation. , 2005, The journal of physical chemistry. B.

[59]  M. Spiro,et al.  Nanoparticle Catalysis in Microemulsions: Oxidation ofN,N-Dimethyl-p-phenylenediamine by Cobalt(III) Pentaammine Chloride Catalyzed by Colloidal Palladium in Water/AOT/n-Heptane Microemulsions , 2000 .

[60]  C. Roth,et al.  Fullerene-linked Pt nanoparticle assemblies. , 2004, Chemical communications.

[61]  E. McFarland,et al.  Catalytic activity of supported Au nanoparticles deposited from block copolymer micelles. , 2003, Journal of the American Chemical Society.

[62]  L. Guczi,et al.  Gold nanoparticles deposited on SiO2/Si100: correlation between size, electron structure, and activity in CO oxidation. , 2003, Journal of the American Chemical Society.

[63]  G. Rothenberg,et al.  Copper-catalyzed Suzuki cross-coupling using mixed nanocluster catalysts. , 2002, Journal of the American Chemical Society.

[64]  B. Johnson Nanoparticles in Catalysis , 2003, Topics in Organometallic Chemistry.

[65]  H. Bönnemann,et al.  Various ligand‐stabilized metal nanoclusters as homogeneous and heterogeneous catalysts in the liquid phase , 2001 .

[66]  T. Akita,et al.  Analytical TEM study on the dispersion of Au nanoparticles in Au/TiO2 catalyst prepared under various temperatures , 2001 .

[67]  Manhong Liu,et al.  Selective hydrogenation of citronellal to citronellol over polymer-stabilized noble metal colloids , 2000 .

[68]  Eric W McFarland,et al.  Size- and support-dependent electronic and catalytic properties of Au0/Au3+ nanoparticles synthesized from block copolymer micelles. , 2003, Journal of the American Chemical Society.

[69]  A. Roucoux,et al.  Stabilized rhodium(0) nanoparticles: a reusable hydrogenation catalyst for arene derivatives in a biphasic water-liquid system. , 2000, Chemistry.

[70]  G. Hutchings Catalysis by gold , 2005 .

[71]  Yinfeng Liu,et al.  Synthesis and property of nanosized palladium catalysts protected by chitosan/silica , 2002 .

[72]  C. Amatore,et al.  Anionic Pd(0) and Pd(II) intermediates in palladium-catalyzed Heck and cross-coupling reactions. , 2000, Accounts of chemical research.

[73]  A. Datye,et al.  Bimetallic palladium-platinum dendrimer-encapsulated catalysts. , 2003, Journal of the American Chemical Society.

[74]  J M Thomas,et al.  Nanopore and nanoparticle catalysts. , 2001, Chemical record.

[75]  G. Fabrizi,et al.  A molten n-Bu4NOAc/n-Bu4NBr mixture as an efficient medium for the stereoselective synthesis of (E)- and (Z)-3,3-diarylacrylates , 2002 .

[76]  T. Müller,et al.  Heterogeneous catalysts for hydroamination reactions: structure–activity relationship , 2004 .

[77]  H. Bönnemann,et al.  Enantioselective Hydrogenations on Platinum Colloids , 1996 .

[78]  W. Herrmann,et al.  METALLORGANISCHE HOMOGENKATALYSE : QUO VADIS ? , 1997 .

[79]  M. Reetz,et al.  A New Method for the Preparation of Nanostructured Metal Clusters , 1995 .

[80]  H. Freund,et al.  Catalytic activity and poisoning of specific sites on supported metal nanoparticles. , 2002, Angewandte Chemie.

[81]  M. El-Sayed,et al.  Some interesting properties of metals confined in time and nanometer space of different shapes. , 2001, Accounts of chemical research.

[82]  J. Nagy,et al.  Hydrogenation of ethylene and cyclohexene catalyzed by colloidal platinum particles obtained in polymerized vesicles , 1986 .

[83]  C. Hardacre,et al.  Preparation of nanoparticulate metal catalysts in porous supports using an ionic liquid route; hydrogenation and C¿C coupling , 2004 .

[84]  V. Dravid,et al.  Direct evidence of oxidized gold on supported gold catalysts. , 2005, The journal of physical chemistry. B.

[85]  A. Mayer Colloidal metal nanoparticles dispersed in amphiphilic polymers , 2001 .

[86]  M. T. Reetz,et al.  Eine neue Methode zur Herstellung nanostrukturierter Metallcluster , 1995 .

[87]  S. Tsang,et al.  Micelle-hosted palladium nanoparticles catalyze citral molecule hydrogenation in supercritical carbon dioxide. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[88]  C. Wai,et al.  Dispersing palladium nanoparticles using a water-in-oil microemulsion--homogenization of heterogeneous catalysis. , 2003, Chemical communications.

[89]  U. Heiz,et al.  Einfluss der geometrischen und elektronischen Struktur sowie der elementaren Zusammensetzung von Clustern auf chemische Prozesse in der Nanometerskala , 2003 .

[90]  V. Rotello,et al.  Highly reactive heterogeneous Heck and hydrogenation catalysts constructed through 'bottom-up' nanoparticle self-assembly. , 2002, Chemical communications.

[91]  M. Graetzel,et al.  Projection, size factors, and reaction dynamics of colloidal redox catalysts mediating light induced hydrogen evolution from water , 1979 .

[92]  J. Sinfelt,et al.  Catalysis by alloys and bimetallic clusters , 1977 .

[93]  U. Landman,et al.  Structural, electronic, and impurity-doping effects in nanoscale chemistry: supported gold nanoclusters. , 2003, Angewandte Chemie.

[94]  J. Rathore,et al.  "Polysiloxane-Pd" nanocomposites as recyclable chemoselective hydrogenation catalysts. , 2004, Journal of the American Chemical Society.

[95]  D. Astruc,et al.  Palladium–dodecanethiolate nanoparticles as stable and recyclable catalysts for the Suzuki–Miyaura reaction of aryl halides under ambient conditions , 2004 .

[96]  B. D. Chandler,et al.  Dendrimer-encapsulated nanoparticle precursors to supported platinum catalysts. , 2003, Journal of the American Chemical Society.

[97]  A. Bell The Impact of Nanoscience on Heterogeneous Catalysis , 2003, Science.

[98]  T. Akita,et al.  Highly selective oxidation of allylic alcohols catalysed by monodispersed 8-shell Pd nanoclusters in the presence of molecular oxygen , 2003 .

[99]  Richard M. Crooks,et al.  Preparation of Cu Nanoclusters within Dendrimer Templates , 1998 .

[100]  Lihong Gong,et al.  The synthesis of sucrose ester and selection of its catalyst , 1999 .

[101]  M. Arai,et al.  Reactions of chlorobenzene and bromobenzene with methyl acrylate using a conventional supported palladium catalyst , 2004 .

[102]  C. Grindon,et al.  A Polymer-Supported Nickel(II) Catalyst for Room Temperature Tamao–Kumada–Corriu Coupling Reactions , 2001 .

[103]  Dieter Vogt,et al.  Catalysis with Soluble Hybrids of Highly Branched Macromolecules with Palladium Nanoparticles in a Continuously Operated Membrane Reactor , 2003 .

[104]  Henri Patin,et al.  Reduced transition metal colloids: a novel family of reusable catalysts? , 2002, Chemical reviews.

[105]  Z. Deng,et al.  SERS Investigation of the Adsorption and Decomposition of Tetramethylammonium Ions on Silver Electrode Surfaces in Aqueous Media , 1994 .

[106]  M. Haruta,et al.  Chemical vapor deposition of gold on Al2O3, SiO2, and TiO2 for the oxidation of CO and of H2 , 1998 .

[107]  J. Dupont,et al.  Transition-metal nanoparticles in imidazolium ionic liquids: recyclable catalysts for biphasic hydrogenation reactions. , 2002, Journal of the American Chemical Society.

[108]  F. Porta,et al.  Surfactant-Protected Gold Particles: New Challenge for Gold-on-Carbon Catalysts , 2003 .

[109]  R. Crooks,et al.  Homogeneous Hydrogenation Catalysis with Monodisperse, Dendrimer-Encapsulated Pd and Pt Nanoparticles. , 1999, Angewandte Chemie.

[110]  John Meurig Thomas Principles and practice of heterogeneous catalysis , 1996 .

[111]  M. Lomello-Tafin,et al.  Preferential oxidation of CO in H2 over highly loaded Au/ZrO2 catalysts obtained by direct oxidation of bulk alloy. , 2005, Chemical communications.

[112]  P. Gallezot,et al.  A stereoselective reduction of dibenzo-18-crown-6 ether to dicyclohexyl-18-crown-6 ether , 1993 .

[113]  Bjørk Hammer,et al.  Theoretical study of CO oxidation on Au nanoparticles supported by MgO(100) , 2004 .

[114]  M. E. Leonowicz,et al.  Clusters, colloids and catalysis , 1987 .

[115]  M. El-Sayed,et al.  Effect of Colloidal Catalysis on the Nanoparticle Size Distribution: Dendrimer−Pd vs PVP−Pd Nanoparticles Catalyzing the Suzuki Coupling Reaction† , 2004 .

[116]  R. Behm,et al.  Kinetics, mechanism, and the influence of H2 on the CO oxidation reaction on a Au/TiO2 catalyst , 2004 .

[117]  F. Nord,et al.  Applicability of Palladium Synthetic High Polymer Catalysts , 1941 .

[118]  R. Crooks,et al.  Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. , 2001, Accounts of chemical research.

[119]  A. Mortreux,et al.  Palladium catalyzed hydroxycarbonylation of olefins in biphasic system: beneficial effect of alkali metal salt and protective-colloid agents on the stability of the catalytic system , 1999 .

[120]  Surface reactivity of Pd nanoparticles supported on polycrystalline substrates as compared to thin film model catalysts: infrared study of CH3OH adsorption , 2004 .

[121]  W. Herrmann,et al.  Organometallic Homogeneous Catalysis—Quo vadis? , 1997 .

[122]  G. Seifert,et al.  Invention and Development of a Novel Catalytic Process for the Production of a Benzenesulfonic Acid-Building Block , 1997, CHIMIA.

[123]  E. McFarland,et al.  Automated electrochemical synthesis and characterization of TiO2 supported Au nanoparticle electrocatalysts , 2004 .

[124]  G. Hutchings,et al.  Oxidation of Glycerol Using Supported Gold Catalysts , 2004 .

[125]  K. Philippot,et al.  A case for enantioselective allylic alkylation catalyzed by palladium nanoparticles. , 2004, Journal of the American Chemical Society.

[126]  Youquan Deng,et al.  Polymer-Immobilized Gold Catalysts for the Efficient and Clean Syntheses of Carbamates and Symmetric Ureas by Oxidative Carbonylation of Aniline and Its Derivatives , 2002 .

[127]  L. Djakovitch,et al.  Heck Arylation of α,β-Unsaturated Aldehydes , 2003 .

[128]  G. Parravano Surface Reactivity of Supported Gold II. Hydrogen Transfer Between Benzene and Cyclohexane , 1970 .

[129]  K. Park,et al.  Sequential actions of palladium and cobalt nanoparticles immobilized on silica: one-pot synthesis of bicyclic enones by catalytic allylic alkylation and Pauson-Khand reaction. , 2002, Organic letters.

[130]  Z. Pászti,et al.  Electronic Structure and Catalytic Properties of Transition Metal Nanoparticles: The Effect of Size Reduction , 2004 .

[131]  Frank Caruso,et al.  Spontaner Phasentransfer metallischer Nanopartikel von der organischen in die wässrige Phase , 2001 .

[132]  L. Kiwi-Minsker,et al.  Pd/SiO2 catalysts: synthesis of Pd nanoparticles with the controlled size in mesoporous silicas , 2003 .

[133]  M. Antonietti,et al.  Preparation of Palladium Colloids in Block Copolymer Micelles and Their Use for the Catalysis of the Heck Reaction , 1997 .

[134]  M. Haruta,et al.  Preparation of supported gold catalysts by gas-phase grafting of gold acethylacetonate for low-temperature oxidation of CO and of H2 , 2003 .

[135]  A. Suzuki,et al.  Preparation of Gold Colloids with UV Irradiation Using Dendrimers as Stabilizer , 1998 .

[136]  T. Tabakova,et al.  Activity and deactivation of Au/TiO2 catalyst in CO oxidation , 2004 .

[137]  E. Meijer,et al.  Encapsulation of Guest Molecules into a Dendritic Box , 1994, Science.

[138]  F. Launay,et al.  IRON OXIDE COLLOIDS AND T-BUTYLHYDROPEROXIDE IN REVERSE MICROEMULSIONS : ANEW AND EFFICIENT SYSTEM FOR CARBON-HYDROGEN BOND ACTIVATION , 1997 .

[139]  Avelino Corma,et al.  Nanocrystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude. , 2004, Angewandte Chemie.

[140]  J. Bradley The Chemistry of Transition Metal Colloids , 2007 .

[141]  R. Kershaw,et al.  Use of colloidal ruthenium particles in the electrochemical reduction of benzene by solvated electrons , 1985 .

[142]  L. Djakovitch,et al.  Supported palladium as catalyst for carbon–carbon bond construction (Heck reaction) in organic synthesis , 2001 .

[143]  Gabor A. Somorjai,et al.  High technology catalysts towards 100% selectivity: Fabrication, characterization and reaction studies , 2005 .

[144]  Y. Maeda,et al.  Preparation of Platinum Nanoparticles by Sonochemical Reduction of the Pt(II) Ion , 1999 .

[145]  A. I. Kozlov,et al.  Supported Gold Catalysts Prepared from a Gold Phosphine Precursor and As-Precipitated Metal-Hydroxide Precursors: Effect of Preparation Conditions on the Catalytic Performance , 2000 .

[146]  F. Caruso,et al.  Spontaneous phase transfer of nanoparticulate metals from organic to aqueous media. , 2001, Angewandte Chemie.

[147]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[148]  A. O. Neto,et al.  Electro-oxidation of methanol and ethanol using PtRu/C electrocatalysts prepared by spontaneous deposition of platinum on carbon-supported ruthenium nanoparticles , 2004 .

[149]  Masato Tanaka,et al.  Metal Nanoparticles Derived from Polysilane Shell Cross-linked Micelle Templates , 2003 .

[150]  V. Terskikh,et al.  Liquid phase catalytic hydrodechlorination of chlorobenzene over supported nickel and palladium catalysts: an NMR insight into solvent function , 2000 .

[151]  Richard M Crooks,et al.  Bimetallic palladium-gold dendrimer-encapsulated catalysts. , 2004, Journal of the American Chemical Society.

[152]  Jens K Nørskov,et al.  Catalytic CO oxidation by a gold nanoparticle: a density functional study. , 2002, Journal of the American Chemical Society.

[153]  C. Satriano,et al.  Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts , 2000 .

[154]  Frank Caruso,et al.  Nanoengineering of particle surfaces. , 2001 .

[155]  Sukbok Chang,et al.  Ruthenium-catalyzed Heck-type olefination and Suzuki coupling reactions: studies on the nature of catalytic species. , 2004, Journal of the American Chemical Society.

[156]  Mathias Brust,et al.  Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system , 1994 .

[157]  István T. Horváth,et al.  Fluorous Biphase Chemistry , 1998 .

[158]  R. V. Chaudhari,et al.  Shape-controlled preparation and catalytic activity of metal nanoparticles for hydrogenation of 2-butyne-1,4-diol and styrene oxide , 2004 .

[159]  L. Guczi,et al.  AuPd bimetallic nanoparticles on TiO2: XRD, TEM, in situ EXAFS studies and catalytic activity in CO oxidation , 2003 .

[160]  P. Dyson,et al.  Minor Modifications to the Ligands Surrounding a Ruthenium Complex Lead to Major Differences in the Way in which they Catalyse the Hydrogenation of Arenes , 2003 .

[161]  J. Malm,et al.  Ligand-stabilized giant palladium clusters : promising candidates in heterogeneous catalysis , 1993 .

[162]  D. Loy,et al.  Encapsulation of Gold Nanoclusters in Silica Materials via an Inverse Micelle/Sol−Gel Synthesis , 1997 .

[163]  M. Spiro,et al.  Catalysis by Palladium Nanoparticles in Microemulsions , 2000 .

[164]  F. Schüth,et al.  A systematic study of the synthesis conditions for the preparation of highly active gold catalysts , 2002 .

[165]  T. Jeffery ON THE EFFICIENCY OF TETRAALKYLAMMONIUM SALTS IN HECK TYPE REACTIONS , 1996 .

[166]  R. Rajagopal,et al.  Ultrasound promoted C-C bond formation: Heck reaction at ambient conditions in room temperature ionic liquids. , 2001, Chemical communications.

[167]  A. Król,et al.  Acetophenone Hydrogenation on Polymer–Palladium Catalysts. The Effect of Polymer Matrix , 2004 .

[168]  F. Zaera Kinetics of chemical reactions on solid surfaces: deviations from conventional theory. , 2002, Accounts of chemical research.

[169]  Hanfan Liu,et al.  Modification of metal cations to the supported metal colloid catalysts , 1999 .

[170]  A. Hallberg,et al.  Scope, Mechanism and Other Fundamental Aspects of the Intermolecular Heck Reaction , 2003 .

[171]  A. Dent,et al.  Structural characterisation of solution species implicated in the palladium-catalysed Heck reaction by Pd K-edge X-ray absorption spectroscopy: palladium acetate as a catalyst precursor , 2002 .

[172]  B. Kasemo,et al.  Adsorbate mobilities on catalyst nanoparticles studied via the angular distribution of desorbing products , 2004 .

[173]  D. Vos,et al.  Pd-Zeolites as Heterogeneous Catalysts in Heck Chemistry , 2002 .

[174]  G. Schmid,et al.  Hydrosilation Reactions Catalyzed by Supported Bimetallic Colloids , 1997 .

[175]  F. Nord,et al.  Systematic Studies on Palladium-Synthetic High Polymer Catalysts , 1943 .

[176]  M. Murata,et al.  Dendritic Nanoreactors Encapsulating Pd Particles for Substrate-Specific Hydrogenation of Olefins , 2002 .

[177]  P. Claus,et al.  Supported Gold Nanoparticles from Quantum Dot to Mesoscopic Size Scale: Effect of Electronic and Structural Properties on Catalytic Hydrogenation of Conjugated Functional Groups , 2000 .

[178]  Yuehe Lin,et al.  Decorating catalytic palladium nanoparticles on carbon nanotubes in supercritical carbon dioxide. , 2003, Chemical communications.

[179]  F. Morfin,et al.  Oxidation of CO on gold supported catalysts prepared by laser vaporization: direct evidence of support contribution. , 2004, Journal of the American Chemical Society.

[180]  M. Reetz,et al.  Platinum-nanoparticles on different types of carbon supports: Correlation of electrocatalytic activity with carrier morphology , 2004 .

[181]  W. Harman The Activation of Aromatic Molecules with Pentaammineosmium(II). , 1997, Chemical reviews.

[182]  Tomokazu Yoshimura,et al.  Preparation of PAMAM- and PPI-metal (silver, platinum, and palladium) nanocomposites and their catalytic activities for reduction of 4-nitrophenol. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[183]  M. Engelhard,et al.  X-ray photoelectron spectroscopic study of the activation of molecularly-linked gold nanoparticle catalysts , 2003 .

[184]  Lajos P. Balogh,et al.  Dendrimer−Silver Complexes and Nanocomposites as Antimicrobial Agents , 2001 .

[185]  D. A. Tomalia,et al.  Starburst‐Dendrimere: Kontrolle von Größe, Gestalt, Oberflächenchemie, Topologie und Flexibilität beim Übergang von Atomen zu makroskopischer Materie , 1990 .

[186]  N. Toshima,et al.  Preparation of Colloidal Rhodium in Poly(vinyl Alcohol) by Reduction with Methanol , 1978 .

[187]  M. Shirai,et al.  Recyclable Homogeneous/Heterogeneous Catalytic Systems for Heck Reaction through Reversible Transfer of Palladium Species between Solvent and Support , 2000 .

[188]  Orla M. Wilson,et al.  Titania-supported PdAu bimetallic catalysts prepared from dendrimer-encapsulated nanoparticle precursors. , 2005, Journal of the American Chemical Society.

[189]  L. Djakovitch,et al.  Amination of aryl bromides catalysed by supported palladium , 1999 .

[190]  F. Cotton,et al.  Catalysis by di- and polynuclear metal cluster complexes , 1998 .

[191]  N. Lewis,et al.  Platinum-catalyzed hydrosilylation - colloid formation as the essential step , 1986 .

[192]  B. Spliethoff,et al.  On the nature of the 'heterogeneous' catalyst: nickel-on-charcoal. , 2003, The Journal of organic chemistry.

[193]  J. Gladysz Recoverable catalysts. Ultimate goals, criteria of evaluation, and the green chemistry interface , 2001 .

[194]  R. Richards,et al.  Aerobic oxidation of cyclohexane by gold nanoparticles immobilized upon mesoporous silica , 2005 .

[195]  H. Freund,et al.  Hydrogenation on metal surfaces: why are nanoparticles more active than single crystals? , 2003, Angewandte Chemie.

[196]  Gianmario Martra,et al.  Metal sols as a useful tool for heterogeneous gold catalyst preparation: reinvestigation of a liquid phase oxidation , 2000 .

[197]  Xiaozhen Yang,et al.  Enantioselective hydrogenation of pyruvates over polymer-stabilized and supported platinum nanoclusters , 1999 .

[198]  H. Fujihara,et al.  Chiral bisphosphine BINAP-stabilized gold and palladium nanoparticles with small size and their palladium nanoparticle-catalyzed asymmetric reaction. , 2003, Journal of the American Chemical Society.

[199]  D. Goodman,et al.  Oxidation Catalysis by Supported Gold Nano-Clusters , 2002 .

[200]  R. Crooks,et al.  SELF-ASSEMBLED INVERTED MICELLES PREPARED FROM A DENDRIMER TEMPLATE : PHASE TRANSFER OF ENCAPSULATED GUESTS , 1999 .

[201]  G. Schmid,et al.  Ligand-stabilized metal clusters and colloids: properties and applications , 1996 .

[202]  J. Beziat,et al.  Stereoselective reduction of disubstituted aromatics on colloidal rhodium , 1994 .

[203]  M. Reetz,et al.  Phosphane-Free Palladium-Catalyzed Coupling Reactions: The Decisive Role of Pd Nanoparticles. , 2000, Angewandte Chemie.

[204]  G. Neri,et al.  Selective liquid phase hydrogenation of citral on Au/Fe2O3 catalysts. , 2002, Chemical communications.

[205]  C. Larpent,et al.  New highly water-soluble surfactants stabilize colloidal rhodium(0) suspensions useful in biphasic catalysis , 1991 .

[206]  P. Blomgren,et al.  Nickel on Charcoal (“Ni/C”): An Expedient and Inexpensive Heterogeneous Catalyst for Cross-Couplings between Aryl Chlorides and Organometallics. I. Functionalized Organozinc Reagents , 1999 .

[207]  B. Sumerlin,et al.  Facile preparation of transition metal nanoparticles stabilized by well-defined (co)polymers synthesized via aqueous reversible addition-fragmentation chain transfer polymerization. , 2002, Journal of the American Chemical Society.

[208]  P. Suarez,et al.  Ionic liquid (molten salt) phase organometallic catalysis. , 2002, Chemical reviews.

[209]  C. Wai,et al.  Hydrogenation of olefins in supercritical CO(2) catalyzed by palladium nanoparticles in a water-in-CO(2) microemulsion. , 2002, Journal of the American Chemical Society.

[210]  A. Roucoux,et al.  Unprecedented efficient hydrogenation of arenes in biphasic liquid–liquid catalysis by re-usable aqueous colloidal suspensions of rhodium , 1999 .

[211]  Xiaolai Wang,et al.  Gold nanoparticles in mesoporous materials showing catalytic selective oxidation cyclohexane using oxygen , 2005 .

[212]  Arthur T. Andrews,et al.  Activation of Aryl Chlorides for Suzuki Cross-Coupling by Ligandless, Heterogeneous Palladium , 2001 .

[213]  R. Pleixats,et al.  Formation of carbon--carbon bonds under catalysis by transition-metal nanoparticles. , 2003, Accounts of chemical research.

[214]  D. Wayne Goodman,et al.  Metal nanoclusters supported on metal oxide thin films: bridging the materials gap , 2000 .

[215]  William A. Goddard,et al.  Starburst Dendrimers: Molecular‐Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter , 1990 .

[216]  H. Blaser,et al.  Enantioselective Hydrogenation Using Heterogeneous Modified Catalysts: An Update , 2003 .

[217]  M. Scurrell,et al.  CO oxidation over gold nanoparticles supported on TiO2 and TiO2-ZnO: catalytic activity effects due to surface modification of TiO2 with ZnO , 2003 .

[218]  G. C. Fu,et al.  Palladium-catalyzed coupling reactions of aryl chlorides. , 2002, Angewandte Chemie.

[219]  Stephen Maldonado,et al.  Synthesis and characterization of dendrimer templated supported bimetallic Pt-Au nanoparticles. , 2004, Journal of the American Chemical Society.

[220]  Avelino Corma,et al.  Catalytic activity of palladium supported on single wall carbon nanotubes compared to palladium supported on activated carbon: Study of the Heck and Suzuki couplings, aerobic alcohol oxidation and selective hydrogenation , 2005 .

[221]  Hiroshi Sano,et al.  Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C , 1987 .

[222]  K. Köhler,et al.  Control of Pd leaching in Heck reactions of bromoarenes catalyzed by Pd supported on activated carbon , 2002 .

[223]  H. Bönnemann,et al.  Application of heterogeneous colloid catalysts for the preparation of fine chemicals , 1997 .

[224]  M. Reetz,et al.  Propylene carbonate stabilized nanostructured palladium clusters as catalysts in Heck reactions , 1996 .

[225]  Itamar Willner,et al.  Photosensitized reduction of carbon dioxide to methane and hydrogen evolution in the presence of ruthenium and osmium colloids: strategies to design selectivity of products distribution , 1987 .

[226]  H. Bönnemann,et al.  Enantioselektive Hydrierung an Platinkolloiden , 1996 .

[227]  P. Guerriero,et al.  Generation of a silica skeleton inside of gel-type functional resins supporting catalytically active palladium nanoclusters , 2004 .

[228]  A. Biffis,et al.  Catalysis by metal nanoparticles supported on functional organic polymers , 2001 .

[229]  M. Beller,et al.  Intermolecular Heck Reaction: Palladium‐Catalyzed Coupling Reactions for Industrial Fine Chemicals Syntheses , 2003 .

[230]  M. Shirai,et al.  The leaching and re-deposition of metal species from and onto conventional supported palladium catalysts in the Heck reaction of iodobenzene and methyl acrylate in N-methylpyrrolidone , 2002 .

[231]  H. Shioyama,et al.  Hexagonal or Quasi Two-Dimensional Palladium Nanoparticles—Tested at the Heck Reaction , 2000 .

[232]  C. Larpent,et al.  Biphasic liquid-liquid hydrogenation catalysis by aqueous colloidal suspensions of rhodium: The choice of the protective-colloid agent and the role of interfacial phenomena , 1997 .

[233]  I. Beletskaya,et al.  The heck reaction as a sharpening stone of palladium catalysis. , 2000, Chemical reviews.

[234]  A. Kaifer,et al.  Water-soluble platinum and palladium nanoparticles modified with thiolated β-cyclodextrin , 2000 .

[235]  Xinlin Yang,et al.  Modification of metal complex on hydrogenation of o-chloronitrobenzene over polymer-stabilized platinum colloidal clusters , 1999 .

[236]  I. Horváth,et al.  Facile Catalyst Separation Without Water: Fluorous Biphase Hydroformylation of Olefins , 1994, Science.

[237]  H. Freund,et al.  Katalytische Aktivität und Vergiftung spezifischer aktiver Zentren von Metall-Nanopartikeln auf Trägern† , 2002 .

[238]  T. Hyeon,et al.  The first intramolecular Pauson-Khand reaction in water using aqueous colloidal cobalt nanoparticles as catalysts. , 2002, Organic letters.

[239]  A. Nakao,et al.  Facile fabrication of Ag-Pd bimetallic nanoparticles in ultrathin TiO(2)-gel films: nanoparticle morphology and catalytic activity. , 2003, Journal of the American Chemical Society.

[240]  M. Witcomb,et al.  Supported gold catalysts prepared by in situ reduction technique: preparation, characterization and catalytic activity measurements , 2004 .

[241]  M. N. Vargaftik,et al.  Clusters and Colloidal Metals in Catalysi , 2002 .

[242]  D. Astruc Dendrimers and nanosciences , 2003 .

[243]  M. Adlim,et al.  Synthesis of chitosan-stabilized platinum and palladium nanoparticles and their hydrogenation activity , 2004 .

[244]  K. Park,et al.  Cobalt nanoparticles on charcoal: a versatile catalyst in the Pauson-Khand reaction, hydrogenation, and the reductive Pauson-Khand reaction. , 2002, Organic letters.

[245]  C. Willans,et al.  Ligand-free palladium catalysed Heck reaction of methyl 2-acetamido acrylate and aryl bromides as key step in the synthesis of enantiopure substituted phenylalanines , 2003 .

[246]  Hidefumi Hirai,et al.  Characterization of palladium nanoparticles protected with polymer as hydrogenation catalyst , 1998 .

[247]  S. Ozkar,et al.  Nanocluster formation and stabilization fundamental studies: ranking commonly employed anionic stabilizers via the development, then application, of five comparative criteria. , 2002, Journal of the American Chemical Society.

[248]  Y. Sasson,et al.  Catalytic hydrogenation of olefins, acetylenes and arenes by rhodium trichloride and aliquat-336 under phase transfer conditions , 1983 .

[249]  W. Schirmer,et al.  Introduction to Surface Chemistry and Catalysis , 1995 .

[250]  G. Somorjai,et al.  MODEL CATALYSTS FABRICATED USING ELECTRON BEAM LITHOGRAPHY AND PULSED LASER DEPOSITION , 1997 .

[251]  A. Wilhelm,et al.  Hydrogenation of olefins in aqueous phase, catalyzed by polymer-protected rhodium colloids: kinetic study , 2001 .

[252]  A. Henglein,et al.  Storage of electrons in aqueous solution: the rates of chemical charging and discharging the colloidal silver microelectrode , 1981 .

[253]  Mostafa A. El-Sayed,et al.  Size effects of PVP-Pd nanoparticles on the catalytic Suzuki reactions in aqueous solution , 2002 .

[254]  H. Bönnemann,et al.  Erzeugung von kolloiden Übergangsmetallen in organischer Phase und ihre Anwendung in der Katalyse , 1991 .

[255]  R. Crooks,et al.  PREPARATION AND CHARACTERIZATION OF 1?2 NM DENDRIMER-ENCAPSULATED GOLD NANOPARTICLES HAVING VERY NARROW SIZE DISTRIBUTIONS , 2004 .

[256]  Masatake Haruta,et al.  Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide , 1989 .

[257]  R. Grigg,et al.  Isoindolinones via a room temperature palladium nanoparticle-catalysed 3-component cyclative carbonylation-amination cascade , 2003 .

[258]  V. Montiel,et al.  Electrochemical characterization of platinum–ruthenium nanoparticles prepared by water-in-oil microemulsion , 2004 .

[259]  J. Sinfelt Ruthenium-copper: a model bimetallic system for studies of surface chemistry and catalysis , 1988 .

[260]  A. Khodadadi,et al.  Preparation, characterization and catalytic activity of gold-based nanoparticles on HY zeolites , 2002 .

[261]  K. K. Hii,et al.  Advances in the Heck Chemistry of Aryl Bromides and Chlorides , 2001 .

[262]  R. Finke,et al.  POLYOXOANION- AND TETRABUTYLAMMONIUM-STABILIZED RH(0)N NANOCLUSTERS : UNPRECEDENTED NANOCLUSTER CATALYTIC LIFETIME IN SOLUTION , 1999 .

[263]  Chun-Sing Lee,et al.  A Novel Yellow Fluorescent Dopant for High-Performance Organic Electroluminescent Devices , 2001 .

[264]  W. Kleist,et al.  In‐situ‐Erzeugung hochaktiver gelöster Pd‐Spezies aus Feststoffkatalysatoren – ein Konzept zur Aktivierung von Chlorarenen in der Heck‐Reaktion , 2004 .

[265]  L. Djakovitch,et al.  Sonogashira cross-coupling reactions catalysed by heterogeneous copper-free Pd-zeolites , 2004 .

[266]  B. Erman,et al.  Palladium Nanoparticles by Electrospinning from Poly(acrylonitrile-co-acrylic acid)-PdCl2 Solutions. Relations between Preparation Conditions, Particle Size, and Catalytic Activity , 2004 .

[267]  Naoki Toshima,et al.  Bimetallic nanoparticles—novel materials for chemical and physical applications , 1998 .

[268]  J. Sclafani,et al.  Biaryls via Suzuki Cross-Couplings Catalyzed by Nickel on Charcoal☆ , 2000 .

[269]  M. Reetz,et al.  Electrochemical Preparation of Nanostructured Titanium Clusters: Characterization and Use in McMurry‐Type Coupling Reactions , 1996 .

[270]  Zhao,et al.  Heck reactions of iodobenzene and methyl acrylate with conventional supported palladium catalysts in the presence of organic and/or inorganic bases without ligands , 2000, Chemistry.

[271]  J. D. de Vries,et al.  Homeopathic ligand-free palladium as a catalyst in the heck reaction. A comparison with a palladacycle. , 2003, Organic letters.

[272]  Wolfgang A. Herrmann,et al.  Applied Homogeneous Catalysis with Organometallic Compounds , 1996 .

[273]  R. Walton,et al.  Nanoparticulate Palladium Supported by Covalently Modified Silicas: Synthesis, Characterization, and Application as Catalysts for the Suzuki Coupling of Aryl Halides , 2005 .

[274]  T. Hyeon,et al.  Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for suzuki coupling reactions. , 2002, Journal of the American Chemical Society.

[275]  R. P. Andres,et al.  Self-Assembly of a Two-Dimensional Superlattice of Molecularly Linked Metal Clusters , 1996, Science.

[276]  J. B. Christensen,et al.  Poly(amidoamine)-Dendrimer-Stabilized Pd(0) Nanoparticles as a Catalyst for the Suzuki Reaction , 2003 .

[277]  Mingqi Zhao,et al.  Homogene katalytische Hydrierung mit monodispersen, dendrimerumhüllten Pd‐ und Pt‐Nanopartikeln , 1999 .

[278]  Guenter Schmid,et al.  Large clusters and colloids. Metals in the embryonic state , 1992 .

[279]  C. Henry Catalytic activity of supported nanometer-sized metal clusters , 2000 .

[280]  K. Park,et al.  Sequential actions of cobalt nanoparticles and palladium(II) catalysts: three-step one-pot synthesis of fenestranes from an enyne and an alkyne diester. , 2002, Journal of the American Chemical Society.

[281]  J. Moulijn,et al.  Direct gas-phase epoxidation of propene over bimetallic Au catalysts , 2002 .

[282]  M. Bowker,et al.  Adventures in Catalytic Nanospace: ‘Seeing’ spillover in-situ for the first time. , 2001 .

[283]  M. Beller,et al.  First palladium-catalyzed Heck reactions with efficient colloidal catalyst systems , 1996 .

[284]  Su Seong Lee,et al.  Colloidal cobalt nanoparticles: a highly active and reusable Pauson-Khand catalyst. , 2001, Chemical communications.

[285]  K. Ebitani,et al.  Immobilization of a ligand-preserved giant palladium cluster on a metal oxide surface and its nobel heterogeneous catalysis for oxidation of allylic alcohols in the presence of molecular oxygen , 1999 .

[286]  K. Philippot,et al.  Organometallic Synthesis of Size‐Controlled Polycrystalline Ruthenium Nanoparticles in the Presence of Alcohols , 2003 .

[287]  G. Bond,et al.  Gold catalysts for olefin hydrogenation , 1973 .

[288]  L. Djakovitch,et al.  Pd-catalyzed Heck arylation of cycloalkenes—studies on selectivity comparing homogeneous and heterogeneous catalysts , 2004 .

[289]  G. Schmid,et al.  Nanoparticulated Gold: Syntheses, Structures, Electronics, and Reactivities , 2003 .

[290]  F. Vögtle,et al.  Dendrimers and Dendrons: Concepts, Syntheses, Applications , 2001 .

[291]  James H. Clark,et al.  A novel Suzuki reaction system based on a supported palladium catalyst , 2001 .

[292]  A. Roucoux,et al.  Arene Hydrogenation with a Stabilised Aqueous Rhodium(0) Suspension: A Major Effect of the Surfactant Counter‐Anion , 2003 .

[293]  N. Toshima,et al.  Preparation of Colloidal Transition Metals in Polymers by Reduction with Alcohols or Ethers , 1979 .

[294]  Anisole hydrogenation with well-characterized polyoxoanion- and tetrabutylammonium-stabilized Rh(0) nanoclusters: effects of added water and acid, plus enhanced catalytic rate, lifetime, and partial hydrogenation selectivity. , 2002, Inorganic chemistry.

[295]  A. Corma,et al.  Supported gold catalyzes the homocoupling of phenylboronic acid with high conversion and selectivity. , 2005, Angewandte Chemie.

[296]  L. Guczi,et al.  Sol-derived Pd/SiO2 catalyst: characterization and activity in benzene hydrogenation , 2002 .

[297]  J. Gladysz,et al.  Thermomorphic fluorous imine and thioether palladacycles as precursors for highly active Heck and Suzuki catalysts; evidence for palladium nanoparticle pathways , 2003 .

[298]  N. Dudney,et al.  Nanoparticles of gold on γ-Al2O3 produced by dc magnetron sputtering , 2005 .

[299]  L. Nie,et al.  Controlled synthesis of platinum catalysts on Au nanoparticles and their electrocatalytic property for methanol oxidation , 2004 .

[300]  S. Tsang,et al.  Aerogel-coated metal nanoparticle colloids as novel entities for the synthesis of defined supported metal catalysts , 2003 .

[301]  T. Hyeon,et al.  Designed synthesis of atom-economical pd/ni bimetallic nanoparticle-based catalysts for sonogashira coupling reactions. , 2004, Journal of the American Chemical Society.

[302]  Zhaolin Liu,et al.  Carbon-Supported Pt and PtRu Nanoparticles as Catalysts for a Direct Methanol Fuel Cell , 2004 .

[303]  C. Moreau,et al.  Hydrogenation of α,β-unsaturated carbonyls: Acrolein hydrogenation on Group VIII metal catalysts , 1993 .

[304]  T. Imanaka,et al.  Highly dispersed Pd on MgO as catalyst for activation of phenyl-chlorine bonds leading to carbon-carbon bond formation , 1990 .

[305]  Hanfan Liu,et al.  Carbonylation of methanol catalyzed by polymer-protected rhodium colloid , 1997 .

[306]  H. Bönnemann,et al.  Herstellung feinverteilter Metall‐ und Legierungspulver , 1990 .

[307]  R. Scopelliti,et al.  Nitrile-functionalized pyridinium ionic liquids: synthesis, characterization, and their application in carbon-carbon coupling reactions. , 2004, Journal of the American Chemical Society.

[308]  I. Taniguchi,et al.  Electrocatalytic oxidation of glucose at carbon electrodes modified with gold and gold-platinum alloy nanoparticles in an alkaline solution , 2005 .

[309]  R. Heck,et al.  Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides , 1972 .

[310]  David Thompson,et al.  Gold-catalysed oxidation of carbon monoxide , 2000 .

[311]  G. Martra,et al.  Hydrosilylation of 1-hexyne promoted by acetone solvated gold atoms derived catalysts , 2005 .

[312]  Z. Hou,et al.  Optimal Particle Size for Reaction Rate Oscillation in CO Oxidation on Nanometer-Sized Palladium Particles , 2004 .

[313]  R. Larsen,et al.  A practical asymmetric synthesis of LTD4 antagonist , 1994 .

[314]  D. Y. Cha,et al.  Surface reactivity of supported gold: I. Oxygen transfer between CO and CO2 , 1970 .

[315]  P. Claus,et al.  The influence of real structure of gold catalysts in the partial hydrogenation of acrolein , 2003 .

[316]  H. Bönnemann,et al.  Selective oxidation of glucose on bismuth-promoted Pd-Pt/C catalysts prepared from NOct4Cl-stabilized Pd-Pt colloids , 1998 .

[317]  P. Stenius,et al.  Monodispersed colloidal metal particles from non-aqueous solutions: Catalytic behaviour for the hydrogenation of but-1-ene of platinum particles in solution , 1986 .

[318]  H. Bönnemann,et al.  The Preparation of Finely Divided Metal and Alloy Powders , 1990 .

[319]  J. Liu,et al.  Design of a high-performance catalyst for CO oxidation: Au nanoparticles confined in mesoporous aluminosilicate , 2004 .

[320]  K. Holmberg,et al.  Structure and catalytic properties of nanosized alumina supported platinum and palladium particles synthesized by reaction in microemulsion. , 2003, Journal of colloid and interface science.

[321]  R. Behm,et al.  New PtRu Alloy Colloids as Precursors for Fuel Cell Catalysts , 2000 .

[322]  L. Djakovitch,et al.  Heck reaction catalyzed by PD-modified zeolites. , 2001, Journal of the American Chemical Society.

[323]  C. Bock,et al.  Size-selected synthesis of PtRu nano-catalysts: reaction and size control mechanism. , 2004, Journal of the American Chemical Society.

[324]  F. Diederich,et al.  Book review: Metal-catalyzed cross-coupling reactions. F. Diederich and P. J. Stang (eds) Wiley–VCH, Weinheim, 1998. xxi + 517 pages, £85 ISBN 3–527–29421–X , 1998 .

[325]  T. Beveridge,et al.  Regioselective silylation of sugars through palladium nanoparticle-catalyzed silane alcoholysis. , 2002, Journal of the American Chemical Society.

[326]  M. Reetz,et al.  A highly active phosphine-free catalyst system for Heck reactions of aryl bromides , 1998 .

[327]  M. T. Reetz,et al.  Phosphanfreie Palladium‐katalysierte Kupplungen: die entscheidende Rolle von Pd‐Nanoteilchen , 2000 .

[328]  S. Tsang,et al.  Molecular Guided Catalytic Hydrogenation by Micelle-Hosted Pd Nanoparticle in Supercritical CO2 , 2004 .

[329]  Young-Min Chung,et al.  Partial hydrogenation of 1,3-cyclooctadiene using dendrimer-encapsulated Pd–Rh bimetallic nanoparticles , 2003 .

[330]  D. Blackmond,et al.  A Catalytic Probe of the Surface of Colloidal Palladium Particles Using Heck Coupling Reactions , 1999 .

[331]  Bernard Delmon,et al.  Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4 , 1993 .

[332]  Adam F. Littke,et al.  Palladiumkatalysierte Kupplungen von Arylchloriden , 2002 .

[333]  M. Rossi,et al.  Gas phase oxidation of alcohols to aldehydes or ketones catalysed by supported gold. , 2003, Chemical communications.

[334]  Caruso,et al.  Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating , 1998, Science.

[335]  M. Moreno-Mañas,et al.  Fluorous Phase Soluble Palladium Nanoparticles as Recoverable Catalysts for Suzuki Cross-Coupling and Heck Reactions , 2001 .

[336]  P. Midgley,et al.  High-performance nanocatalysts for single-step hydrogenations. , 2003, Accounts of chemical research.

[337]  Y. Mori,et al.  Organic Synthesis Inside Particles in Water: Lewis Acid−Surfactant-Combined Catalysts for Organic Reactions in Water Using Colloidal Dispersions as Reaction Media , 2000 .

[338]  B. Lipshutz,et al.  Aromatic Aminations by Heterogeneous Ni0/C Catalysis , 2000 .

[339]  G. Neri,et al.  Gold catalysts for the liquid phase oxidation of o-hydroxybenzyl alcohol , 2001 .

[340]  M. Haruta,et al.  Vital role of moisture in the catalytic activity of supported gold nanoparticles. , 2004, Angewandte Chemie.

[341]  Younan Xia,et al.  Synthesis and Characterization of Mesoscopic Hollow Spheres of Ceramic Materials with Functionalized Interior Surfaces , 2001 .

[342]  A. Roucoux,et al.  Aqueous Rhodium Colloidal Suspension in Reduction of Arene Derivatives in Biphasic System: a Significant Physico-chemical Role of Surfactant Concentration on Catalytic Activity , 2002 .

[343]  Arun S. Mujumdar,et al.  Introduction to Surface Chemistry and Catalysis , 1994 .

[344]  Hong Yang,et al.  Hydrogenation of Arenes under Mild Conditions Using Rhodium Pyridylphosphine and Bipyridyl Complexes Tethered to a Silica-Supported Palladium Heterogeneous Catalyst , 2000 .

[345]  K. Ebitani,et al.  Hydroxyapatite-supported palladium nanoclusters: a highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen. , 2004, Journal of the American Chemical Society.

[346]  J. Widegren,et al.  A review of the problem of distinguishing true homogeneous catalysis from soluble or other metal-particle heterogeneous catalysis under reducing conditions , 2003 .

[347]  R. Crooks,et al.  Dendrimer‐Encapsulated Pt Nanoparticles: Synthesis, Characterization, and Applications to Catalysis , 1999 .

[348]  L. Rossi,et al.  The partial hydrogenation of benzene to cyclohexene by nanoscale ruthenium catalysts in imidazolium ionic liquids. , 2004, Chemistry.

[349]  R. Danheiser Catalytic hydrogenation in organic synthesis - procedures and commentary , 1979 .

[350]  Weize Wu,et al.  Pd nanoparticles immobilized on molecular sieves by ionic liquids: heterogeneous catalysts for solvent-free hydrogenation. , 2004, Angewandte Chemie.

[351]  M. Arai,et al.  Heck reactions with various types of palladium complex catalysts: application of multiphase catalysis and supercritical carbon dioxide , 2003 .

[352]  F. Launay,et al.  Ruthenium colloids: A new catalyst for alkane oxidation by tBHP in a biphasic water-organic phase system , 1998 .

[353]  C. Louis,et al.  Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea , 2004 .

[354]  M. Reetz,et al.  Redox‐Controlled Size‐Selective Fabrication of Nanostructured Transition Metal Colloids , 1999 .

[355]  N. Sugimoto,et al.  Template synthesis and characterization of gold nano-wires and -particles in mesoporous channels of FSM-16 , 2003 .

[356]  A. Kaifer,et al.  Cyclodextrin-Capped Palladium Nanoparticles as Catalysts for the Suzuki Reaction , 2003 .

[357]  P. Forgó,et al.  Organically modified Pd-silica catalysts applied in Heck coupling. , 2003, Chemical communications.

[358]  Y. Shiraishi,et al.  Oxidation of ethylene catalyzed by colloidal dispersions of poly(sodium acrylate)-protected silver nanoclusters , 2000 .

[359]  G. Somorjai,et al.  Catalysis and nanoscience. , 2003, Chemical communications.

[360]  A. Henglein Catalysis of the reduction of Tl/sup +/ and of CH/sub 2/Cl/sub 2/ by colloidal silver in aqueous solution. [Gamma rays] , 1979 .

[361]  M. Cinellu,et al.  Gold(I) and gold(III) complexes with anionic oxygen donor ligands: hydroxo, oxo and alkoxo complexes , 2002 .

[362]  M. El-Sayed,et al.  The Effect of Stabilizers on the Catalytic Activity and Stability of Pd Colloidal Nanoparticles in the Suzuki Reactions in Aqueous Solution , 2001 .

[363]  S. Overbury,et al.  Comparison of Au Catalysts Supported on Mesoporous Titania and Silica: Investigation of Au Particle Size Effects and Metal-Support Interactions , 2004 .

[364]  T. Maschmeyer,et al.  Cyclopalladated imine catalysts in Heck arylation: search for the catalytic species , 2000 .

[365]  R. Crooks,et al.  Heck Heterocoupling within a Dendritic Nanoreactor , 2001 .

[366]  R. Neumann,et al.  Carbon-carbon and carbon-nitrogen coupling reactions catalyzed by palladium nanoparticles derived from a palladium substituted Keggin-type polyoxometalate. , 2002, Organic letters.

[367]  M. Arai,et al.  CATALYST PRODUCT SEPARATION TECHNIQUES IN HECK REACTION , 2001 .

[368]  K. Philippot,et al.  Gas Phase Catalysis by Metal Nanoparticles in Nanoporous Alumina Membranes , 2004 .

[369]  P. Gallezot,et al.  Colloidal Rhodium: A New Catalytic System for the Reduction of Dibenzo-18-crown-6 Ether , 1994 .

[370]  A. Nacci,et al.  Pd Nanoparticle Catalyzed Heck Arylation of 1,1-Disubstituted Alkenes in Ionic Liquids. Study on Factors Affecting the Regioselectivity of the Coupling Process , 2003 .

[371]  Shurong Wang,et al.  TiO2 Supported Nano—Au Catalysts Prepared via Solvated Metal Atom Impregnation for Low-Temperature CO Oxidation , 2004 .

[372]  L. Djakovitch,et al.  New hetero-bimetallic Pd-Cu catalysts for the one-pot indole synthesis via the Sonogashira reaction , 2004 .

[373]  L. Kiwi-Minsker,et al.  Highly dispersed gold on activated carbon fibers for low-temperature CO oxidation , 2004 .

[374]  R. Breinbauer,et al.  Suzuki and Heck reactions catalyzed by preformed palladium clusters and palladiumnickel bimetallic clusters , 1996 .

[375]  G. Hutchings,et al.  Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst. , 2002, Chemical communications.

[376]  C. Wai,et al.  Catalytic hydrogenation of arenes with rhodium nanoparticles in a water-in-supercritical CO2 microemulsion. , 2002, Chemical communications.

[377]  M. Kantam,et al.  A new bifunctional catalyst for tandem Heck-asymmetric dihydroxylation of olefins. , 2002, Chemical communications.

[378]  U. Prüße,et al.  Partial oxidation of polyvalent oxygen substituted compounds on nano-scale gold catalysts , 2004 .

[379]  L. Djakovitch,et al.  Sonogashira Cross‐Coupling Reactions Catalysed by Copper‐Free Palladium Zeolites , 2004 .

[380]  Manfred T. Reetz,et al.  Size-Selective Synthesis of Nanostructured Transition Metal Clusters , 1994 .

[381]  Peter Pfeifer,et al.  PdZn catalysts prepared by washcoating microstructured reactors , 2004 .

[382]  M. Haruta,et al.  Performance of Au/TiO2 catalyst under ambient conditions , 2002 .

[383]  L. Lewis Chemical catalysis by colloids and clusters , 1993 .

[384]  Johannes G. de Vries,et al.  The Power of High-Throughput Experimentation in Homogeneous Catalysis Research for Fine Chemicals , 2003 .

[385]  Jianliang Xiao,et al.  Heck Reaction in Ionic Liquids and the in Situ Identification of N-Heterocyclic Carbene Complexes of Palladium , 2000 .

[386]  K. Köhler,et al.  In situ generation of highly active dissolved palladium species from solid catalysts-a concept for the activation of aryl chlorides in the Heck reaction. , 2004, Angewandte Chemie.

[387]  C. Larpent,et al.  Colloidal rhodium suspensions stabilized by various hydrotropic or surface active triphenylmethyl trisulfonates and their use in biphasic catalysis , 1991 .

[388]  H. Bönnemann,et al.  Formation of Colloidal Transition Metals in Organic Phases and Their Application in Catalysis , 1991 .

[389]  M. Fox,et al.  Synthesis, Characterization, and Catalytic Applications of a Palladium-Nanoparticle-Cored Dendrimer , 2003 .