The microbiology of radioactive waste disposal

[1]  S. Ekendahl,et al.  Occurrence and identification of microorganisms in compacted clay-based buffer material designed for use in a nuclear fuel waste disposal vault. , 1997, Canadian journal of microbiology.

[2]  K. Pedersen,et al.  Survival of sulfate reducing bacteria at different water activities in compacted bentonite , 1996 .

[3]  K. Pedersen,et al.  Diversity and distribution of subterranean bacteria in groundwater at Oklo in Gabon, Africa, as determined by 16S rRNA gene sequencing , 1996, Molecular ecology.

[4]  S. Ekendahl,et al.  16S rRNA gene diversity of attached and unattached bacteria in boreholes along the access tunnel to the Äspö hard rock laboratory, Sweden , 1996 .

[5]  Karsten Pedersen,et al.  Investigations of subterranean bacteria in deep crystalline bedrock and their importance for the disposal of nuclear waste , 1996 .

[6]  E. Gustafsson,et al.  Organic carbon oxidation induced by large-scale shallow water intrusion into a vertical fracture zone at the Äspö Hard Rock Laboratory (Sweden) , 1996 .

[7]  Todd O. Stevens,et al.  Lithoautotrophic Microbial Ecosystems in Deep Basalt Aquifers , 1995, Science.

[8]  R. Christen,et al.  Comparison of phenotypical and molecular methods for the identification of bacterial strains isolated from a deep subsurface environment , 1995, Applied and environmental microbiology.

[9]  K. Schleifer,et al.  Phylogenetic identification and in situ detection of individual microbial cells without cultivation. , 1995, Microbiological reviews.

[10]  S. Ekendahl,et al.  Characterization of attached bacterial populations in deep granitic groundwater from the Stripa research mine by 16S rRNA gene sequencing and scanning electron microscopy. , 1994, Microbiology.

[11]  S. Ekendahl,et al.  Carbon transformations by attached bacterial populations in granitic groundwater from deep crystalline bed-rock of the Stripa research mine. , 1994, Microbiology.

[12]  R. Alexander,et al.  Natural Analogue Studies in the Geological Disposal of Radioactive Wastes , 1994 .

[13]  S. Macko,et al.  Abiogenic methanogenesis in crystalline rocks , 1993 .

[14]  S. Macko,et al.  Evidence for bacterially generated hydrocarbon gas in Canadian shield and Fennoscandian shield rocks , 1993 .

[15]  Karsten Pedersen,et al.  The deep subterranean biosphere , 1993 .

[16]  K. Pedersen Bacterial Processes in Nuclear Waste Disposal , 1993 .

[17]  T. Flodén,et al.  Gas seepages, gas eruptions and degassing structures in the seafloor along the Strömma tectonic lineament in the crystalline Stockholm Archipelago, east Sweden , 1992 .

[18]  S. Ekendahl,et al.  Incorporation of CO2 and introduced organic compounds by bacterial populations in groundwater from the deep crystalline bedrock of the Stripa mine , 1992 .

[19]  K. Pedersen,et al.  Possible Effects of Bacteria on Trace Element Migration in Crystalline Bed-Rock , 1992 .

[20]  K. Pedersen,et al.  Autotrophic and mixotrophic growth of Gallionella ferruginea , 1991 .

[21]  F. Brockman,et al.  Physiological Diversity and Distributions of Heterotrophic Bacteria in Deep Cretaceous Sediments of the Atlantic Coastal Plain , 1991, Applied and environmental microbiology.

[22]  R. Herbert,et al.  1 Methods for Enumerating Microorganisms and Determining Biomass in Natural Environments , 1990 .

[23]  J. M. Thomas,et al.  Vertical and Horizontal Variations in the Physiological Diversity of the Aerobic Chemoheterotrophic Bacterial Microflora in Deep Southeast Coastal Plain Subsurface Sediments , 1989, Applied and environmental microbiology.

[24]  A. Francis,et al.  Denitrification in deep subsurface sediments , 1989 .

[25]  David L. Balkwill,et al.  Numbers, diversity, and morphological characteristics of aerobic, chemoheterotrophic bacteria in deep subsurface sediments from a site in South Carolina , 1989 .