An improved butterfly optimization algorithm with chaos

Butterfly Optimization Algorithm (BOA) is a new comer in the category of nature inspired metaheuristic algorithms, inspired from food foraging behavior of the butterflies. Similar to other metaheuristic algorithms, it encounters two probable problems; (1) entrapment in local optima and (2) slow convergence speed. Chaotic maps are one of the best methods to improve the performance of metaheuristic algorithms. In the present study, chaos is introduced into BOA which increases its performance in terms of both local optima avoidance and convergence speed. Ten chaotic maps are employed to enhance the performance of the BOA. The proposed chaotic BOAs are validated on unimodal and multimodal benchmark test functions as well as on engineering design problems. The results indicate that the chaotic maps are able to significantly boost the performance of BOA.

[1]  Robert B. Blair,et al.  Butterfly diversity and human land use: Species assemblages along an urban gradient , 1997 .

[2]  Fahime Moein-darbari,et al.  Scheduling of scientific workflows using a chaos-genetic algorithm , 2010, ICCS.

[3]  C. Coello,et al.  CONSTRAINT-HANDLING USING AN EVOLUTIONARY MULTIOBJECTIVE OPTIMIZATION TECHNIQUE , 2000 .

[4]  Godfrey C. Onwubolu,et al.  New optimization techniques in engineering , 2004, Studies in Fuzziness and Soft Computing.

[5]  Carlos A. Coello Coello,et al.  Constraint-handling in genetic algorithms through the use of dominance-based tournament selection , 2002, Adv. Eng. Informatics.

[6]  Satvir Singh,et al.  Butterfly algorithm with Lèvy Flights for global optimization , 2015, 2015 International Conference on Signal Processing, Computing and Control (ISPCC).

[7]  S. N. Kramer,et al.  An Augmented Lagrange Multiplier Based Method for Mixed Integer Discrete Continuous Optimization and Its Applications to Mechanical Design , 1994 .

[8]  Carlos A. Coello Coello,et al.  An empirical study about the usefulness of evolution strategies to solve constrained optimization problems , 2008, Int. J. Gen. Syst..

[9]  Janez Brest,et al.  A Brief Review of Nature-Inspired Algorithms for Optimization , 2013, ArXiv.

[10]  Ashok Dhondu Belegundu,et al.  A Study of Mathematical Programming Methods for Structural Optimization , 1985 .

[11]  Bilal Alatas,et al.  Chaotic harmony search algorithms , 2010, Appl. Math. Comput..

[12]  K. M. Ragsdell,et al.  Optimal Design of a Class of Welded Structures Using Geometric Programming , 1976 .

[13]  Kalyanmoy Deb,et al.  A combined genetic adaptive search (GeneAS) for engineering design , 1996 .

[14]  H. Loh,et al.  A Sequential Linearization Approach for Solving Mixed-Discrete Nonlinear Design Optimization Problems , 1991 .

[15]  Jason Brownlee,et al.  Clever Algorithms: Nature-Inspired Programming Recipes , 2012 .

[16]  Xin-She Yang,et al.  Nature-Inspired Metaheuristic Algorithms , 2008 .

[17]  Huanwen Tang,et al.  Application of chaos in simulated annealing , 2004 .

[18]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[19]  Xin-She Yang,et al.  Chaos-enhanced accelerated particle swarm optimization , 2013, Commun. Nonlinear Sci. Numer. Simul..

[20]  Amir Hossein Gandomi,et al.  Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems , 2011, Engineering with Computers.

[21]  B. Alatas,et al.  Chaos embedded particle swarm optimization algorithms , 2009 .

[22]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[23]  Jasbir S. Arora,et al.  Introduction to Optimum Design , 1988 .

[24]  G. Cheng,et al.  On the efficiency of chaos optimization algorithms for global optimization , 2007 .

[25]  M. Fesanghary,et al.  An improved harmony search algorithm for solving optimization problems , 2007, Appl. Math. Comput..

[26]  Ling Wang,et al.  An effective co-evolutionary particle swarm optimization for constrained engineering design problems , 2007, Eng. Appl. Artif. Intell..

[27]  E. Sandgren,et al.  Nonlinear Integer and Discrete Programming in Mechanical Design Optimization , 1990 .

[28]  Kalyanmoy Deb,et al.  Optimal design of a welded beam via genetic algorithms , 1991 .

[29]  Di He,et al.  Chaotic characteristics of a one-dimensional iterative map with infinite collapses , 2001 .

[30]  Mohammad Saleh Tavazoei,et al.  Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms , 2007, Appl. Math. Comput..

[31]  Carlos A. Coello Coello,et al.  Use of a self-adaptive penalty approach for engineering optimization problems , 2000 .

[32]  P. Vasant,et al.  Hybrid Linear Search, Genetic Algorithms, and Simulated Annealing for Fuzzy Non-Linear Industrial Production Planning Problems , 2013 .

[33]  Ling Wang,et al.  An effective co-evolutionary differential evolution for constrained optimization , 2007, Appl. Math. Comput..

[34]  A. Gandomi,et al.  Imperialist competitive algorithm combined with chaos for global optimization , 2012 .

[35]  Jasbir S. Arora,et al.  4 – Optimum Design Concepts , 2004 .

[36]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[37]  Andrew Lewis,et al.  Adaptive gbest-guided gravitational search algorithm , 2014, Neural Computing and Applications.

[38]  K. Lee,et al.  A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice , 2005 .

[39]  Chun Zhang,et al.  Mixed-discrete nonlinear optimization with simulated annealing , 1993 .

[40]  R. G. Fenton,et al.  A MIXED INTEGER-DISCRETE-CONTINUOUS PROGRAMMING METHOD AND ITS APPLICATION TO ENGINEERING DESIGN OPTIMIZATION , 1991 .

[41]  Ali Elkamel,et al.  A surrogate-based optimization methodology for the optimal design of an air quality monitoring network † , 2015 .

[42]  Bilal Alatas,et al.  Chaotic bee colony algorithms for global numerical optimization , 2010, Expert Syst. Appl..

[43]  Michael N. Vrahatis,et al.  Unified Particle Swarm Optimization for Solving Constrained Engineering Optimization Problems , 2005, ICNC.

[44]  S. Wu,et al.  GENETIC ALGORITHMS FOR NONLINEAR MIXED DISCRETE-INTEGER OPTIMIZATION PROBLEMS VIA META-GENETIC PARAMETER OPTIMIZATION , 1995 .

[45]  Andrew Lewis,et al.  Grey Wolf Optimizer , 2014, Adv. Eng. Softw..