Stackelberg solutions for fuzzy random two-level linear programming through level sets and fractile criterion optimization

This paper considers Stackelberg solutions for two-level linear programming problems under fuzzy random environments. To deal with the formulated fuzzy random two-level linear programming problem, an α-stochastic two-level linear programming problem is defined through the introduction of α-level sets of fuzzy random variables. Taking into account vagueness of judgments of decision makers, fuzzy goals are introduced and the α-stochastic two-level linear programming problem is transformed into the problem to maximize the satisfaction degree for each fuzzy goal. Through fractile criterion optimization in stochastic programming, the transformed stochastic two-level programming problem can be reduced to a deterministic two-level programming problem. An extended concept of Stackelberg solution is introduced and a numerical example is provided to illustrate the proposed method.

[1]  Wang Guangyuan,et al.  On fuzzy random linear programming , 1994 .

[2]  E. E. Ammar,et al.  On solutions of fuzzy random multiobjective quadratic programming with applications in portfolio problem , 2008, Inf. Sci..

[3]  Ichiro Nishizaki,et al.  Interactive multiobjective fuzzy random linear programming: Maximization of possibility and probability , 2008, Eur. J. Oper. Res..

[4]  Dan A. Ralescu,et al.  Overview on the development of fuzzy random variables , 2006, Fuzzy Sets Syst..

[5]  Ichiro Nishizaki,et al.  Computational Methods Through Genetic Algorithms for Obtaining Stackelberg Solutions to Two-level Mixed Zero-One Programming Problems , 1998 .

[6]  Ichiro Nishizaki,et al.  INTERACTIVE DECISION MAKING USING POSSIBILITY AND NECESSITY MEASURES FOR A FUZZY RANDOM MULTIOBJECTIVE 0–1 PROGRAMMING PROBLEM , 2006, Cybern. Syst..

[7]  M. Puri,et al.  Fuzzy Random Variables , 1986 .

[8]  Baoding Liu,et al.  Fuzzy random dependent-chance programming , 2001, IEEE Trans. Fuzzy Syst..

[9]  Heinrich J. Rommelfanger,et al.  A general concept for solving linear multicriteria programming problems with crisp, fuzzy or stochastic values , 2007, Fuzzy Sets Syst..

[10]  Baoding Liu,et al.  Fuzzy random chance-constrained programming , 2001, IEEE Trans. Fuzzy Syst..

[11]  Patrice Marcotte,et al.  A Trust-Region Method for Nonlinear Bilevel Programming: Algorithm and Computational Experience , 2005, Comput. Optim. Appl..

[12]  Masatoshi Sakawa,et al.  Fuzzy Sets and Interactive Multiobjective Optimization , 1993 .

[13]  Marcia Helena Costa Fampa,et al.  Bilevel optimization applied to strategic pricing in competitive electricity markets , 2008, Comput. Optim. Appl..

[14]  Huibert Kwakernaak,et al.  Fuzzy random variables - I. definitions and theorems , 1978, Inf. Sci..

[15]  Jonathan F. Bard,et al.  A Branch and Bound Algorithm for the Bilevel Programming Problem , 1990, SIAM J. Sci. Comput..

[16]  S. Scholtes,et al.  Nondifferentiable and two-level mathematical programming , 1997 .

[17]  M. K. Luhandjula Fuzzy stochastic linear programming: Survey and future research directions , 2006, Eur. J. Oper. Res..

[18]  Berç Rustem,et al.  Parametric global optimisation for bilevel programming , 2007, J. Glob. Optim..

[19]  I. M. Stancu-Minasian,et al.  Overview of Different Approaches for Solving Stochastic Programming Problems with Multiple Objective Functions , 1990 .

[20]  George Emanuel,et al.  Definitions and Theorems , 1986 .

[21]  A. Charnes,et al.  Deterministic Equivalents for Optimizing and Satisficing under Chance Constraints , 1963 .

[22]  Jonathan F. Bard,et al.  Bundle Trust-Region Algorithm for Bilinear Bilevel Programming , 2001 .

[23]  Masatoshi Sakawa,et al.  Fuzzy random bottleneck spanning tree problems using possibility and necessity measures , 2004, Eur. J. Oper. Res..

[24]  I. M. Stancu-Minasian,et al.  Stochastic Programming: with Multiple Objective Functions , 1985 .

[25]  Ichiro Nishizaki,et al.  A Possibilistic and Stochastic Programming Approach to Fuzzy Random MST Problems , 2005, IEICE Trans. Inf. Syst..

[26]  Ichiro Nishizaki,et al.  Cooperative and Noncooperative Multi-Level Programming , 2009 .

[27]  Ichiro Nishizaki,et al.  A fuzzy random multiob jective 0-1 programming based on the expectation optimization model using possibility and necessity measures , 2004, Math. Comput. Model..

[28]  Madan M. Gupta,et al.  On fuzzy stochastic optimization , 1996, Fuzzy Sets Syst..

[29]  Masatoshi Sakawa,et al.  INTERACTIVE FUZZY MULTI-OBJECTIVE STOCHASTIC LINEAR PROGRAMMING , 2008 .

[30]  Jonathan F. Bard,et al.  An explicit solution to the multi-level programming problem , 1982, Comput. Oper. Res..

[31]  M. Sakawa,et al.  Stackelberg Solutions to Multiobjective Two-Level Linear Programming Problems , 1999 .

[32]  Masatoshi Sakawa,et al.  Large Scale Interactive Fuzzy Multiobjective Programming , 2000 .

[33]  Herminia I. Calvete,et al.  A note on 'bilevel linear fractional programming problem' , 2004, Eur. J. Oper. Res..

[34]  S. Kataoka A Stochastic Programming Model , 1963 .

[35]  Hiroaki Ishii,et al.  A STUDY ON FUZZY RANDOM PORTFOLIO SELECTION PROBLEMS BASED ON POSSIBILITY AND NECESSITY MEASURES , 2005 .

[36]  Ichiro Nishizaki,et al.  Stackelberg Solutions to Two-Level Linear Programming Problems with Random Variable Coefficients , 2003 .

[37]  Seyed Jafar Sadjadi,et al.  A probabilistic bi-level linear multi-objective programming problem to supply chain planning , 2007, Appl. Math. Comput..

[38]  Yian-Kui Liu,et al.  Fuzzy Random Variables: A Scalar Expected Value Operator , 2003, Fuzzy Optim. Decis. Mak..

[39]  R. Kruse,et al.  Statistics with vague data , 1987 .

[40]  Wang Guangyuan,et al.  Linear programming with fuzzy random variable coefficients , 1993 .

[41]  John R. Birge,et al.  Introduction to Stochastic Programming , 1997 .

[42]  Ichiro Nishizaki,et al.  COMPUTATIONAL METHODS THROUGH GENETIC ALGORITHMS FOR OBTAINING STACKELBERG SOLUTIONS TO TWO-LEVEL INTEGER PROGRAMMING PROBLEMS , 2005, Cybern. Syst..

[43]  J. Cruz,et al.  On the Stackelberg strategy in nonzero-sum games , 1973 .

[44]  Jiuping Xu,et al.  Multi-objective decision making model under fuzzy random environment and its application to inventory problems , 2008, Inf. Sci..

[45]  G. Anandalingam,et al.  A penalty function approach for solving bi-level linear programs , 1993, J. Glob. Optim..

[46]  Miles G. Nicholls,et al.  The application of non-linear bi-level programming to the aluminium industry , 1996, J. Glob. Optim..

[47]  Masatoshi Sakawa,et al.  Genetic Algorithms and Fuzzy Multiobjective Optimization , 2001 .

[48]  Wayne F. Bialas,et al.  Two-Level Linear Programming , 1984 .

[49]  Christodoulos A. Floudas,et al.  Global Optimization of Nonlinear Bilevel Programming Problems , 2001, J. Glob. Optim..

[50]  Masatoshi Sakawa,et al.  Interactive Multiobjective Fuzzy Random Linear Programming through Fractile Criteria , 2012, Adv. Fuzzy Syst..

[51]  Pierre Hansen,et al.  New Branch-and-Bound Rules for Linear Bilevel Programming , 1989, SIAM J. Sci. Comput..

[52]  Hitoshi Yano Interactive Decision Making for Hierarchical Multiobjective Linear Programming Problems with Random Variable Coefficients , 2010 .

[53]  M. K. Luhandjula Fuzziness and randomness in an optimization framework , 1996, Fuzzy Sets Syst..

[54]  Mahyar A. Amouzegar,et al.  Determining optimal pollution control policies: An application of bilevel programming , 1999, Eur. J. Oper. Res..