Spectral Tau approximation of the two-dimensional stokes problem
暂无分享,去创建一个
[1] Philip Rabinowitz,et al. Methods of Numerical Integration , 1985 .
[2] J. Lions,et al. Non-homogeneous boundary value problems and applications , 1972 .
[3] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .
[4] D. Gottlieb,et al. Numerical analysis of spectral methods , 1977 .
[5] R. Temam. Navier-Stokes Equations , 1977 .
[6] D. Gottlieb,et al. Numerical analysis of spectral methods : theory and applications , 1977 .
[7] A. Quarteroni,et al. Approximation results for orthogonal polynomials in Sobolev spaces , 1982 .
[8] Y. Morchoisne. Large eddy simulation by spectral method or by multi level particle method , 1983 .
[9] P. Moin,et al. Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations , 1984 .
[10] A. Patera. A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .
[11] P. Le Quéré,et al. Computation of natural convection in two-dimensional cavities with Chebyshev polynomials , 1985 .
[12] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[13] C. Canuto,et al. Analysis of the Kleiser-Schumann method , 1986 .
[14] G. S. Landriani. Convergence of the Kleiser Schumann method for the Navier-Stokes equations , 1986 .
[15] J. Shen. Résolution numérique des équations de Stokes et Navier-Stokes par les méthodes spectrales , 1987 .
[16] Y. Maday,et al. Chebyshev spectral approximation of Navier-Stokes equations in a two dimensional domain , 1987 .
[17] Y. Maday,et al. Calcul de la pression dans la résolution spectrale du problème de Stokes , 1987 .
[18] T. A. Zang,et al. Spectral methods for fluid dynamics , 1987 .
[19] Y. Maday,et al. Analysis of spectral projectors in one-dimensional domains , 1990 .