Spectral Tau approximation of the two-dimensional stokes problem

SummaryWe analyse the Spectral Tau method for the approximation of the Stokes system on a square with Dirichlet boundary conditions. We provide an error estimate, in the norm of the Sobolev spaceHs, for the approximation of a divergence free vector field with polynomial divergence free vector fields. We apply this result to prove some convergence estimates for the solution of the discrete Stokes problem.

[1]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[2]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[3]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[4]  D. Gottlieb,et al.  Numerical analysis of spectral methods , 1977 .

[5]  R. Temam Navier-Stokes Equations , 1977 .

[6]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[7]  A. Quarteroni,et al.  Approximation results for orthogonal polynomials in Sobolev spaces , 1982 .

[8]  Y. Morchoisne Large eddy simulation by spectral method or by multi level particle method , 1983 .

[9]  P. Moin,et al.  Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations , 1984 .

[10]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[11]  P. Le Quéré,et al.  Computation of natural convection in two-dimensional cavities with Chebyshev polynomials , 1985 .

[12]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[13]  C. Canuto,et al.  Analysis of the Kleiser-Schumann method , 1986 .

[14]  G. S. Landriani Convergence of the Kleiser Schumann method for the Navier-Stokes equations , 1986 .

[15]  J. Shen Résolution numérique des équations de Stokes et Navier-Stokes par les méthodes spectrales , 1987 .

[16]  Y. Maday,et al.  Chebyshev spectral approximation of Navier-Stokes equations in a two dimensional domain , 1987 .

[17]  Y. Maday,et al.  Calcul de la pression dans la résolution spectrale du problème de Stokes , 1987 .

[18]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[19]  Y. Maday,et al.  Analysis of spectral projectors in one-dimensional domains , 1990 .