Fixed point method for solving nonlinear quadratic Volterra integral equations

We consider a paper of Banas and Sadarangani (2008) [11] which deals with monotonicity properties of the superposition operator and their applications. An application of the monotonicity properties is to study the solvability of a quadratic Volterra integral equation. In this paper, we prepare an efficient numerical technique based on the fixed point method and quadrature rules to approximate a solution for quadratic Volterra integral equation. Then convergence of numerical scheme is proved by some theorems and some numerical examples are given to show applicability and accuracy of the numerical method and guarantee the theoretical results.

[1]  Ian H. Sloan,et al.  A new collocation-type method for Hammerstein integral equations , 1987 .

[2]  K. Maleknejad,et al.  Study on existence of solutions for some nonlinear functional–integral equations , 2008 .

[3]  K. Maleknejad,et al.  Existence of solutions for some nonlinear integral equations , 2009 .

[4]  Xb,et al.  ID-WAVELETS METHOD FOR HAMMERSTEIN INTEGRAL EQUATIONS , 1998 .

[5]  F. Stenger Numerical Methods Based on Sinc and Analytic Functions , 1993 .

[6]  J. Banaś,et al.  Monotonicity properties of the superposition operator and their applications , 2008 .

[7]  K. Deimling Nonlinear functional analysis , 1985 .

[8]  T. A. Burton,et al.  Volterra integral and differential equations , 1983 .

[9]  Philip W. Sharp,et al.  Some Extended Explicit Bel'tyukov Pairs for Volterra Integral Equations of the Second Kind , 2000, SIAM J. Numer. Anal..

[10]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[11]  Maria Meehan,et al.  Existence Theory for Nonlinear Integral and Integrodifferential Equations , 1998 .

[12]  Józef Banaś,et al.  Measures of noncompactness related to monotonicity , 2001 .

[13]  Józef Banaś,et al.  Monotonic solutions of a quadratic integral equation of Volterra type , 2004 .

[14]  Masatake Mori,et al.  Double exponential formulas for numerical indefinite integration , 2003 .

[15]  Józef Banaś,et al.  On existence and asymptotic stability of solutions of a nonlinear integral equation , 2003 .

[16]  D. G. Rüegg,et al.  A Mathematical Model for the Steady Activation of a Skeletal Muscle , 2008, SIAM J. Appl. Math..

[17]  J. Caballero,et al.  Monotonic solutions of a class of quadratic integral equations of Volterra type , 2005 .

[18]  K. Maleknejad,et al.  Investigation on the existence of solutions for some nonlinear functional-integral equations , 2009 .

[19]  D. O’Regan,et al.  Positive Solutions of Differential, Difference and Integral Equations , 1998 .

[20]  Mamdouh M. El-Kady,et al.  On approximate solution of Hammerstein integral equations in the space Lp (p⩾1) , 2003, Appl. Math. Comput..