Global dynamics in a chemotaxis model describing tumor angiogenesis with/without mitosis in any dimensions

∂u ∂ν = ∂v ∂ν = ∂w ∂ν = 0, x ∈ ∂Ω, t > 0, u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω, in a bounded smooth but not necessarily convex domain Ω ⊂ R(n ≥ 2) with model parameters ξ1, ξ2, d, θ > 0, a, χ, μ ≥ 0. Based on subtle energy estimates, we first identify two positive constants ξ0 and μ0 such that the above problem allows only global classical solutions with qualitative bounds provided one of the following conditions holds: (1) ξ1 ≥ ξ0χ2; (2) θ = 1, μ ≥ max {

[1]  Takashi Suzuki,et al.  Global existence and blow-up for a system describing the aggregation of microglia , 2014, Appl. Math. Lett..

[2]  M. Chaplain,et al.  A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor. , 1993, IMA journal of mathematics applied in medicine and biology.

[3]  Nicola Bellomo,et al.  Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues , 2015 .

[4]  Herbert Amann,et al.  Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems , 1993 .

[5]  H. Cakalli On Boundedness , 2010, 1012.0543.

[6]  Youshan Tao,et al.  Competing effects of attraction vs. repulsion in chemotaxis , 2013 .

[7]  M. Chaplain,et al.  A mathematical model of the first steps of tumour-related angiogenesis: capillary sprout formation and secondary branching. , 1996, IMA journal of mathematics applied in medicine and biology.

[8]  Dirk Horstmann,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .

[9]  Ke Lin,et al.  On boundedness, blow-up and convergence in a two-species and two-stimuli chemotaxis system with/without loop , 2019, Calculus of Variations and Partial Differential Equations.

[10]  Vincenzo Vespri,et al.  Holder Estimates for Local Solutions of Some Doubly Nonlinear Degenerate Parabolic Equations , 1993 .

[11]  Michael Winkler,et al.  Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model , 2010 .

[12]  Pavol Quittner,et al.  Superlinear Parabolic Problems , 2007, Birkhäuser Advanced Texts Basler Lehrbücher.

[13]  D A Lauffenburger,et al.  Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. , 1991, Journal of theoretical biology.

[14]  Youshan Tao,et al.  The dampening role of large repulsive convection in a chemotaxis system modeling tumor angiogenesis , 2021, Nonlinear Analysis.

[15]  Yan Li,et al.  Blow-up of nonradial solutions to attraction–repulsion chemotaxis system in two dimensions , 2016 .

[16]  Zhian Wang,et al.  Global stabilization of the full attraction-repulsion Keller-Segel system , 2019, Discrete & Continuous Dynamical Systems - A.

[17]  K. Painter,et al.  Volume-filling and quorum-sensing in models for chemosensitive movement , 2002 .

[18]  J. Tyagi,et al.  Keller-Segel Chemotaxis Models: A Review , 2020, Acta Applicandae Mathematicae.

[19]  W. Jäger,et al.  On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .

[20]  Herbert Amann,et al.  Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems , 1990, Differential and Integral Equations.

[21]  Tian Xiang Chemotactic Aggregation versus Logistic Damping on Boundedness in the 3D Minimal Keller-Segel Model , 2018, SIAM J. Appl. Math..

[22]  S. Agmon,et al.  Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .

[23]  Michael Winkler,et al.  Large Time Behavior in a Multidimensional Chemotaxis-Haptotaxis Model with Slow Signal Diffusion , 2015, SIAM J. Math. Anal..

[24]  Analysis of a chemotaxis-convection model of capillary-sprout growth during tumor angiogenesis , 2020 .

[25]  Xinru Cao,et al.  Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces , 2014, 1405.6666.

[26]  Michael Winkler,et al.  Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction , 2011 .

[27]  Jia Liu Classical solutions and steady states of an attraction-repulsion chemotaxis in one dimension , 2011 .

[28]  Hai-Yang Jin,et al.  Boundedness of the attraction–repulsion Keller–Segel system , 2015 .

[29]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[30]  Tian Xiang,et al.  Chemotaxis effect vs. logistic damping on boundedness in the 2-D minimal Keller–Segel model , 2018, Comptes Rendus Mathematique.

[31]  Ping Liu,et al.  Pattern Formation of the Attraction-Repulsion Keller-Segel System , 2013 .

[32]  Zhi-An Wang,et al.  Boundedness, blowup and critical mass phenomenon in competing chemotaxis , 2016 .

[33]  Youshan Tao,et al.  Global boundedness in a fully parabolic attraction–repulsion chemotaxis model , 2015 .

[34]  Zhian Wang,et al.  Asymptotic dynamics of the one‐dimensional attraction–repulsion Keller–Segel model , 2015 .

[35]  N. Mizoguchi,et al.  Nondegeneracy of blow-up points for the parabolic Keller–Segel system , 2014 .

[36]  Dirk Horstmann,et al.  Blow-up in a chemotaxis model without symmetry assumptions , 2001, European Journal of Applied Mathematics.

[37]  Chunlai Mu,et al.  Stabilization in a higher-dimensional attraction–repulsion chemotaxis system if repulsion dominates over attraction , 2018 .

[38]  N Paweletz,et al.  Tumor-related angiogenesis. , 1989, Critical reviews in oncology/hematology.

[39]  Michael Winkler,et al.  Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system , 2011, 1112.4156.

[40]  Hiroshi Matano,et al.  Asymptotic Behavior and Stability of Solutions of Semilinear Diffusion Equations , 1979 .

[41]  Tian Xiang,et al.  Boundedness and global existence in the higher-dimensional parabolic–parabolic chemotaxis system with/without growth source , 2015 .