Gradient force pattern, focal shift, and focal switch in an apodized optical system

In this paper, the evolution of the gradient force pattern, focal shift, and focal switch induced by a three-portion pure phase-shifting apodizer is numerically investigated in detail. The results show that the proposed apodizer may induce tunable gradient force on the particles in the focal region, focal shift, and focal switch. By adjusting the geometrical parameters of the phase-shifting apodizer, multiple traps may occur with changeable distance between them, and the shape of the optical trap also evolves evidently. More interestingly, for certain geometrical parameters of the proposed apodizer, by changing the phase shift of inner annular portion, the considerable focal shift may occur with focal switch accompanying, which is discussed to show that this kind of apodizer may be a very promising method of transporting trapped particles.

[1]  M Martínez-Corral,et al.  Focal switch: a new effect in low-Fresnel-number systems. , 1996, Applied optics.

[2]  D. Grier A revolution in optical manipulation , 2003, Nature.

[3]  Yajun Li,et al.  Focal shift and focal switch in dual-focus systems , 1997 .

[4]  Jesper Glückstad,et al.  Multiple-beam optical tweezers generated by the generalized phase-contrast method. , 2002, Optics letters.

[5]  M. Nieto-Vesperinas,et al.  Fundamentals and model of photonic-force microscopy. , 2001, Optics letters.

[6]  Colin J R Sheppard,et al.  Focal shift and the axial optical coordinate for high-aperture systems of finite Fresnel number. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  A. Castro,et al.  Optical trapping microfabrication with electrophoretically delivered particles inside glass capillaries. , 2003, Optics letters.

[8]  Jesper Glückstad,et al.  Dynamic array generation and pattern formation for optical tweezers , 2000 .

[9]  M. P. Givens Focal shifts in diffracted converging spherical waves , 1982 .

[10]  E. Wolf,et al.  Focal shifts in diffracted converging spherical waves , 1981 .

[11]  Jennifer E. Curtis,et al.  Dynamic holographic optical tweezers , 2002 .

[12]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[13]  Yajun Li,et al.  Dependence of the focal shift on Fresnel number and f number , 1982 .

[14]  M W Berns,et al.  Micromanipulation of chromosomes in PTK2 cells using laser microsurgery (optical scalpel) in combination with laser-induced optical force (optical tweezers). , 1993, Experimental cell research.

[15]  G. J. Brakenhoff,et al.  Theoretical study of optically induced forces on spherical particles in a single beam trap. I: Rayleight scatterers , 1992 .

[16]  Fuxi Gan,et al.  Focus splitting induced by a pure phase-shifting apodizer , 2004 .

[17]  P W Smith,et al.  Four-wave mixing in an artificial Kerr medium. , 1981, Optics letters.

[18]  H. Rubinsztein-Dunlop,et al.  Optical alignment and spinning of laser-trapped microscopic particles , 1998, Nature.

[19]  Pál Ormos,et al.  Complex micromachines produced and driven by light , 2001, CLEO 2002.

[20]  Vincent Daria,et al.  Interactive light-driven and parallel manipulation of inhomogeneous particles. , 2002, Optics express.

[21]  M W Berns,et al.  Micromanipulation of Chromosomes in PTK2 Cells Using Laser Microsurgery in Combination with Laser-Induced Optical Force , 1993 .

[22]  W Sibbett,et al.  Creation and Manipulation of Three-Dimensional Optically Trapped Structures , 2002, Science.

[23]  Peter John Rodrigo,et al.  Dynamic array of dark optical traps , 2004 .

[24]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[25]  Kallol Bhattacharya,et al.  Possibility of an optical focal shift with polarization masks. , 2003, Applied optics.

[26]  Vidal F. Canales,et al.  Focusing properties of annular binary phase filters , 2004 .

[27]  W Sibbett,et al.  Controlled Rotation of Optically Trapped Microscopic Particles , 2001, Science.

[28]  J. Golovchenko,et al.  Optical Matter: Crystallization and Binding in Intense Optical Fields , 1990, Science.

[29]  V. Mahajan,et al.  Axial irradiance and optimum focusing of laser beams. , 1983, Applied Optics.

[30]  K. Dholakia,et al.  Microfluidic sorting in an optical lattice , 2003, Nature.

[31]  M Martínez-Corral,et al.  Focal-shift formula in apodized nontelecentric focusing systems. , 2001, Optics letters.

[32]  G. Spalding,et al.  Computer-generated holographic optical tweezer arrays , 2000, cond-mat/0008414.

[33]  Liren Liu,et al.  Superresolution laser beam shaping. , 2004, Applied optics.

[34]  Fuxi Gan,et al.  Phase-shifting apodizers for increasing focal depth. , 2002, Applied optics.

[35]  D. Grier,et al.  Optical tweezer arrays and optical substrates created with diffractive optics , 1998 .

[36]  W. Sibbett,et al.  Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam , 2002, Nature.

[37]  Satoshi Kawata,et al.  Near-Field Scanning Optical Microscope with a Laser Trapped Probe , 1994 .

[38]  J. Stamnes,et al.  Focusing at small angular apertures in the debye and Kirchhoff approximations , 1981 .