Neural population coding is optimized by discrete tuning curves.

The sigmoidal tuning curve that maximizes the mutual information for a Poisson neuron, or population of Poisson neurons, is obtained. The optimal tuning curve is found to have a discrete structure that results in a quantization of the input signal. The number of quantization levels undergoes a hierarchy of phase transitions as the length of the coding window is varied. We postulate, using the mammalian auditory system as an example, that the presence of a subpopulation structure within a neural population is consistent with an optimal neural code.

[1]  Kenneth Rose,et al.  A mapping approach to rate-distortion computation and analysis , 1994, IEEE Trans. Inf. Theory.

[2]  Ilan N Goodman,et al.  Inferring the capacity of the vector Poisson channel with a Bernoulli model , 2008, Network.

[3]  R. Keith Research in otolaryngology. , 1986, The American journal of otology.

[4]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .

[5]  Laura Sacerdote,et al.  Mean Instantaneous Firing Frequency Is Always Higher Than the Firing Rate , 2004, Neural Computation.

[6]  B. Moore An Introduction to the Psychology of Hearing , 1977 .

[7]  Laurel H. Carney,et al.  The Spontaneous-Rate Histogram of the Auditory Nerve Can Be Explained by Only Two or Three Spontaneous Rates and Long-Range Dependence , 2005, Journal of the Association for Research in Otolaryngology.

[8]  M. McDonnell,et al.  Maximally informative stimuli and tuning curves for sigmoidal rate-coding neurons and populations. , 2008, Physical review letters.

[9]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[10]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[11]  Richard E. Blahut,et al.  Principles and practice of information theory , 1987 .

[12]  Sean P. Meyn,et al.  Characterization and computation of optimal distributions for channel coding , 2005, IEEE Transactions on Information Theory.

[13]  Wulfram Gerstner,et al.  Spiking Neuron Models , 2002 .

[14]  S. Shamai,et al.  Capacity of a pulse amplitude modulated direct detection photon channel , 1990 .

[15]  Matthias Bethge,et al.  Optimal Short-Term Population Coding: When Fisher Information Fails , 2002, Neural Computation.

[16]  R Meddis,et al.  Simulation of auditory-neural transduction: further studies. , 1988, The Journal of the Acoustical Society of America.

[17]  Mark D McDonnell,et al.  Information capacity of stochastic pooling networks is achieved by discrete inputs. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  B. Moore,et al.  Temporal window shape as a function of frequency and level. , 1989, The Journal of the Acoustical Society of America.

[19]  Derek Abbott,et al.  Optimal information transmission in nonlinear arrays through suprathreshold stochastic resonance , 2006 .

[20]  M. Bethge,et al.  Second order phase transition in neural rate coding: binary encoding is optimal for rapid signal transmission. , 2003, Physical review letters.

[21]  Y. Kabanov The Capacity of a Channel of the Poisson Type , 1978 .

[22]  E. Salinas How Behavioral Constraints May Determine Optimal Sensory Representations , 2006, PLoS biology.

[23]  M. Bethge,et al.  Optimal neural rate coding leads to bimodal firing rate distributions. , 2003, Network.

[24]  Nicolas Brunel,et al.  Mutual Information, Fisher Information, and Population Coding , 1998, Neural Computation.

[25]  Shiro Ikeda,et al.  Capacity of a Single Spiking Neuron Channel , 2009, Neural Computation.

[26]  M. Liberman Single-neuron labeling in the cat auditory nerve. , 1982, Science.

[27]  M. Sachs,et al.  Rate versus level functions for auditory-nerve fibers in cats: tone-burst stimuli. , 1974, The Journal of the Acoustical Society of America.

[28]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[29]  Joel G. Smith,et al.  The Information Capacity of Amplitude- and Variance-Constrained Scalar Gaussian Channels , 1971, Inf. Control..

[30]  M. V. Rossum,et al.  In Neural Computation , 2022 .

[31]  H. Spoendlin,et al.  Analysis of the human auditory nerve , 1989, Hearing Research.

[32]  October I Physical Review Letters , 2022 .

[33]  Andrew G. Glen,et al.  APPL , 2001 .