Growth and percolation on the uniform infinite planar triangulation

AbstractA construction as a growth process for sampling of the uniform in- finite planar triangulation (UIPT), defined in [AnS], is given. The construction is algorithmic in nature, and is an efficient method of sampling a portion of the UIPT.By analyzing the progress rate of the growth process we show that a.s. the UIPT has growth rate r4 up to polylogarithmic factors, in accordance with heuristic results from the physics literature. Additionally, the boundary component of the ball of radius r separating it from infinity a.s. has growth rate r2 up to polylogarithmic factors. It is also shown that the properly scaled size of a variant of the free triangulation of an m-gon (also defined in [AnS]) converges in distribution to an asymmetric stable random variable of type 1/2.By combining Bernoulli site percolation with the growth process for the UIPT, it is shown that a.s. the critical probability pc = 1/2 and that at pc percolation does not occur.

[1]  I. Benjamini,et al.  Recurrence of Distributional Limits of Finite Planar Graphs , 2000, math/0011019.

[2]  Vladimir Kazakov,et al.  The ising model on a random planar lattice: The structure of the phase transition and the exact critical exponents , 1987 .

[3]  V. Zolotarev One-dimensional stable distributions , 1986 .

[4]  B. Duplantier RANDOM WALKS AND QUANTUM GRAVITY IN TWO DIMENSIONS , 1998 .

[5]  Zheng-Xu He,et al.  Hyperbolic and parabolic packings , 1995, Discret. Comput. Geom..

[6]  Wendelin Werner,et al.  Values of Brownian intersection exponents III: Two-sided exponents , 2002 .

[7]  P. Di Francesco,et al.  2D gravity and random matrices , 1993 .

[8]  Edward A. Bender,et al.  0-1 laws for maps , 1999 .

[9]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[10]  Nicholas C. Wormald,et al.  Almost All Maps Are Asymmetric , 1995, J. Comb. Theory, Ser. B.

[11]  Philippe Flajolet,et al.  Random maps, coalescing saddles, singularity analysis, and Airy phenomena , 2001, Random Struct. Algorithms.

[12]  B. Duplantier Random walks, polymers, percolation, and quantum gravity in two dimensions , 1999 .

[14]  Nicholas C. Wormald,et al.  Random Triangulations of the Plane , 1988, Eur. J. Comb..

[15]  Alexander M. Polyakov,et al.  Fractal Structure of 2D Quantum Gravity , 1988 .

[16]  Nicholas C. Wormald,et al.  The Size of the Largest Components in Random Planar Maps , 1999, SIAM J. Discret. Math..

[17]  Zhicheng Gao,et al.  Root Vertex Valency Distributions of Rooted Maps and Rooted Triangulations , 1994, Eur. J. Comb..

[18]  W. T. Tutte On the enumeration of convex polyhedra , 1980, J. Comb. Theory, Ser. B.

[19]  I. Goulden,et al.  Combinatorial Enumeration , 2004 .

[20]  Wendelin Werner,et al.  Values of Brownian intersection exponents, I: Half-plane exponents , 1999 .

[21]  Scaling in quantum gravity , 1995, hep-th/9501049.

[22]  W. T. Tutte,et al.  A Census of Planar Triangulations , 1962, Canadian Journal of Mathematics.

[23]  Philippe Flajolet,et al.  Planar Maps and Airy Phenomena , 2000, ICALP.

[24]  S. Smirnov Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits , 2001 .

[25]  W. G. Brown Enumeration of Triangulations of the Disk , 1964 .

[26]  R. C. Mullin Enumeration of Rooted Triangular Maps , 1964 .

[27]  Edward A. Bender,et al.  Largest 4-Connected Components of 3-Connected Planar Triangulations , 1995, Random Struct. Algorithms.

[28]  Simplicial Quantum Gravity and Random Lattices , 1993, hep-th/9303127.