Iterative Methods for Improving Mesh Parameterizations

We present two complementary methods for automatically improving mesh parameterizations and demonstrate that they provide a very desirable combination of efficiency and quality. First, we describe a new iterative method for constructing quasi-conformal parameterizations with free boundaries. We formulate the problem as fitting the coordinate gradients to two guidance vector fields of equal magnitude that are everywhere orthogonal. In only one linear step, our method efficiently generates parameterizations with natural boundaries from those with convex boundaries. If repeated until convergence, it produces the unique global minimizer of the Dirichlet energy. Next, we introduce a new non-linear optimization framework that can rapidly reduce interior distortion under a variety of metrics. By iteratively solving linear systems, our algorithm converges to a high quality, low distortion parameterization in very few iterations. The two components of our system are effective both in combination or when used independently.

[1]  Kun Zhou,et al.  Mesh editing with poisson-based gradient field manipulation , 2004, ACM Trans. Graph..

[2]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[3]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[4]  Alla Sheffer,et al.  Parameterization of Faceted Surfaces for Meshing using Angle-Based Flattening , 2001, Engineering with Computers.

[5]  Reinhard Klein,et al.  An Adaptable Surface Parameterization Method , 2003, IMR.

[6]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[7]  Bruno Lévy,et al.  ABF++: fast and robust angle based flattening , 2005, TOGS.

[8]  Pedro V. Sander,et al.  Texture mapping progressive meshes , 2001, SIGGRAPH.

[9]  Andrei Khodakovsky,et al.  Globally smooth parameterizations with low distortion , 2003, ACM Trans. Graph..

[10]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[11]  Günther Greiner,et al.  Remeshing triangulated surfaces with optimal parameterizations , 2001, Comput. Aided Des..

[12]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[13]  Timothy A. Davis,et al.  An Unsymmetric-pattern Multifrontal Method for Sparse Lu Factorization , 1993 .

[14]  Dani Lischinski,et al.  Bounded-distortion piecewise mesh parameterization , 2002, IEEE Visualization, 2002. VIS 2002..

[15]  Guillermo Sapiro,et al.  Conformal Surface Parameterization for Texture Mapping , 1999 .

[16]  Michael S. Floater,et al.  Mean value coordinates , 2003, Comput. Aided Geom. Des..

[17]  K. Hormann,et al.  MIPS: An Efficient Global Parametrization Method , 2000 .

[18]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[19]  Christian Rössl,et al.  Discrete tensorial quasi-harmonic maps , 2005, International Conference on Shape Modeling and Applications 2005 (SMI' 05).

[20]  Christian Rössl,et al.  Setting the boundary free: a composite approach to surface parameterization , 2005, SGP '05.

[21]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[22]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[23]  Patrick Pérez,et al.  Poisson image editing , 2003, ACM Trans. Graph..

[24]  Mark Meyer,et al.  Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.

[25]  Pierre Alliez,et al.  Periodic global parameterization , 2006, TOGS.

[26]  Peter Schröder,et al.  Discrete conformal mappings via circle patterns , 2005, TOGS.

[27]  Hans-Peter Seidel,et al.  A fast and simple stretch-minimizing mesh parameterization , 2004, Proceedings Shape Modeling Applications, 2004..