An Improved Normal Compliance Method for Dynamic Hyperelastic Problems with Energy Conservation Property

[1]  Roland Masson,et al.  Numerical analysis of a mixed-dimensional poromechanical model with frictionless contact at matrix-fracture interfaces , 2022, ArXiv.

[2]  R. Masson,et al.  Energy-stable discretization of two-phase flows in deformable porous media with frictional contact at matrix-fracture interfaces , 2021, J. Comput. Phys..

[3]  Mikaël Barboteu,et al.  Inexact primal-dual active set method for solving elastodynamic frictional contact problems , 2021, Comput. Math. Appl..

[4]  Mikaël Barboteu,et al.  Analysis of a dynamic frictional contact problem for hyperviscoelastic material with non-convex energy density , 2018 .

[5]  Abderrahim Jourani,et al.  Moreau-Yosida Regularization of State-Dependent Sweeping Processes with Nonregular Sets , 2017, J. Optim. Theory Appl..

[6]  Jérôme Pousin,et al.  An overview of recent results on Nitsche's method for contact problems , 2016 .

[7]  Mikaël Barboteu,et al.  Analysis of two active set type methods to solve unilateral contact problems , 2016, Appl. Math. Comput..

[8]  P. Kalita,et al.  A dynamic viscoelastic contact problem with normal compliance, finite penetration and nonmonotone slip rate dependent friction , 2015 .

[9]  Vincent Acary,et al.  Energy conservation and dissipation properties of time‐integration methods for nonsmooth elastodynamics with contact , 2014, 1410.2499.

[10]  Franz Chouly,et al.  A Nitsche finite element method for dynamic contact : 1. Semi-discrete problem analysis and time-marching schemes , 2014 .

[11]  Franz Chouly,et al.  An adaptation of Nitscheʼs method to the Tresca friction problem , 2014 .

[12]  V. Acary,et al.  Projected event-capturing time-stepping schemes for nonsmooth mechanical systems with unilateral contact and Coulomb’s friction , 2013 .

[13]  Serge Dumont,et al.  On enhanced descent algorithms for solving frictional multicontact problems: application to the discrete element method , 2013 .

[14]  M. Sofonea,et al.  Mathematical Models in Contact Mechanics , 2012 .

[15]  Patrice Hauret,et al.  Mixed interpretation and extensions of the equivalent mass matrix approach for elastodynamics with contact , 2010 .

[16]  M. Barboteu,et al.  Formulation and analysis of two energy-consistent methods for nonlinear elastodynamic frictional contact problems , 2009 .

[17]  M. Barboteu,et al.  A frictionless viscoelastodynamic contact problem with energy consistent properties: Numerical analysis and computational aspects , 2009 .

[18]  Patrick Laborde,et al.  Mass redistribution method for finite element contact problems in elastodynamics , 2008 .

[19]  Barbara I. Wohlmuth,et al.  Energy-Consistent CoRotational Schemes for Frictional Contact Problems , 2008, SIAM J. Sci. Comput..

[20]  Barbara I. Wohlmuth,et al.  A Primal-Dual Active Set Algorithm for Three-Dimensional Contact Problems with Coulomb Friction , 2008, SIAM J. Sci. Comput..

[21]  Zhi-Qiang Feng,et al.  Uzawa and Newton algorithms to solve frictional contact problems within the bi‐potential framework , 2008 .

[22]  P. Tallec,et al.  Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact , 2006 .

[23]  Yves Renard,et al.  Hybrid discretization of the Signorini problem with Coulomb friction. Theoretical aspects and comparison of some numerical solvers , 2006 .

[24]  Barbara Wohlmuth,et al.  A primal–dual active set strategy for non-linear multibody contact problems , 2005 .

[25]  F. Lebon,et al.  Contact problems with friction: models and simulations , 2003, Simul. Model. Pract. Theory.

[26]  Tod A. Laursen,et al.  Improved implicit integrators for transient impact problems––dynamic frictional dissipation within an admissible conserving framework , 2003 .

[27]  P. Wriggers,et al.  Computational Contact Mechanics , 2002 .

[28]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[29]  T. Laursen Computational Contact and Impact Mechanics: Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis , 2002 .

[30]  F. Armero,et al.  On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics. Part II: second-order methods , 2001 .

[31]  Oscar Gonzalez,et al.  Exact energy and momentum conserving algorithms for general models in nonlinear elasticity , 2000 .

[32]  A. Curnier,et al.  Large deformation frictional contact mechanics: continuum formulation and augmented Lagrangian treatment , 1999 .

[33]  Patrick Chabrand,et al.  Various numerical methods for solving unilateral contact problems with friction , 1998 .

[34]  F. Armero,et al.  Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems , 1998 .

[35]  T. Laursen,et al.  DESIGN OF ENERGY CONSERVING ALGORITHMS FOR FRICTIONLESS DYNAMIC CONTACT PROBLEMS , 1997 .

[36]  J. C. Simo,et al.  The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics , 1992 .

[37]  P. Alart,et al.  A mixed formulation for frictional contact problems prone to Newton like solution methods , 1991 .

[38]  P. G. Ciarlet,et al.  Mathematical elasticity, volume I: Three-dimensional elasticity , 1989 .

[39]  J. T. Oden,et al.  Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws , 1987 .

[40]  J. T. Oden,et al.  Models and computational methods for dynamic friction phenomena , 1984 .

[41]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[42]  J. Lions,et al.  Les inéquations en mécanique et en physique , 1973 .

[43]  Emilio Vilches Regularization of perturbed state-dependent sweeping processes with nonregular sets , 2018 .

[44]  Mircea Sofonea,et al.  A Hyperelastic Dynamic Frictional Contact Model with Energy-Consistent Properties , 2015 .

[45]  Patrick Laborde,et al.  On the discretization of contact problems in elastodynamics , 2006 .

[46]  K. Kunisch,et al.  Semismooth Newton methods for a class of unilaterally constrained variational problems , 2004 .

[47]  P. Tallec Numerical methods for nonlinear three-dimensional elasticity , 1994 .

[48]  G. Saxcé,et al.  New Inequality and Functional for Contact with Friction: The Implicit Standard Material Approach∗ , 1991 .

[49]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[50]  J. T. Oden,et al.  Interior penalty methods for finite element approximations of the Signorini problem in elastostatics , 1982 .

[51]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .