Acid catalysis dominated suppression of xylose hydrogenation with increasing yield of 1,2-pentanediol in the acid-metal dual catalyst system

[1]  Jinfu Wang,et al.  Synergistic effect of Brønsted and Lewis acid sites for the synthesis of polyoxymethylene dimethyl ethers over highly efficient SO42−/TiO2 catalysts , 2017 .

[2]  Xiao-hui Liu,et al.  Direct hydrogenolysis of biomass-derived furans over Pt/CeO2 catalyst with high activity and stability , 2017 .

[3]  Hongming Lou,et al.  Catalytic transfer hydrogenation of butyl levulinate to γ-valerolactone over zirconium phosphates with adjustable Lewis and Brønsted acid sites , 2017 .

[4]  L. Daemen,et al.  Selective production of arenes via direct lignin upgrading over a niobium-based catalyst , 2017, Nature Communications.

[5]  L. E. Borges,et al.  Direct conversion of xylose to furfuryl alcohol on single organic–inorganic hybrid mesoporous silica-supported catalysts , 2017 .

[6]  A. Fukuoka,et al.  Amorphous Nb2O5 as a Selective and Reusable Catalyst for Furfural Production from Xylose in Biphasic Water and Toluene , 2017 .

[7]  Jifeng Pang,et al.  Selectivity Control for Cellulose to Diols: Dancing on Eggs , 2017 .

[8]  Xue-qing Gong,et al.  The Critical Role of Water in the Ring Opening of Furfural Alcohol to 1,2-Pentanediol , 2017 .

[9]  K. Wilson,et al.  Niobic acid nanoparticle catalysts for the aqueous phase transformation of glucose and fructose to 5-hydroxymethylfurfural , 2016 .

[10]  D. Vlachos,et al.  Reaction Pathways and Intermediates in Selective Ring Opening of Biomass-Derived Heterocyclic Compounds by Iridium , 2016 .

[11]  Hailong Liu,et al.  Efficient hydrogenolysis of biomass-derived furfuryl alcohol to 1,2- and 1,5-pentanediols over a non-precious Cu–Mg3AlO4.5 bifunctional catalyst , 2016 .

[12]  K. Tomishige,et al.  Selective transformation of hemicellulose (xylan) into n-pentane, pentanols or xylitol over a rhenium-modified iridium catalyst combined with acids , 2016 .

[13]  K. Jitsukawa,et al.  Direct Transformation of Furfural to 1,2-Pentanediol Using a Hydrotalcite-Supported Platinum Nanoparticle Catalyst , 2014 .

[14]  D. Sholl,et al.  Role of Lewis and Brønsted Acid Sites in the Dehydration of Glycerol over Niobia , 2014 .

[15]  M. A. Fraga,et al.  Hemicellulose-derived chemicals: one-step production of furfuryl alcohol from xylose. , 2014 .

[16]  P. Maireles-Torres,et al.  Dehydration of d-xylose to furfural using different supported niobia catalysts , 2014 .

[17]  Tao Zhang,et al.  Dehydration of xylose to furfural over niobium phosphate catalyst in biphasic solvent system , 2013 .

[18]  Ye Xu,et al.  High-throughput screening of monometallic catalysts for aqueous-phase hydrogenation of biomass-derived oxygenates , 2013 .

[19]  K. Han,et al.  Conversion of glucose into levulinic acid with solid metal(IV) phosphate catalysts , 2013 .

[20]  T. A. Nijhuis,et al.  Biphasic single-reactor process for dehydration of xylose and hydrogenation of produced furfural , 2013 .

[21]  Bin Zhang,et al.  Selective conversion of furfuryl alcohol to 1,2-pentanediol over a Ru/MnOx catalyst in aqueous phase , 2012 .

[22]  K. Tomishige,et al.  Production of 1,5-pentanediol from biomass via furfural and tetrahydrofurfuryl alcohol , 2012 .

[23]  Xiao-hui Liu,et al.  Mesoporous niobium phosphate: an excellent solid acid for the dehydration of fructose to 5-hydroxymethylfurfural in water , 2012 .

[24]  Sudipta De,et al.  One-pot conversions of lignocellulosic and algal biomass into liquid fuels. , 2012, ChemSusChem.

[25]  D. Vlachos,et al.  Conversion of Xylose to Furfural Using Lewis and Brønsted Acid Catalysts in Aqueous Media , 2012 .

[26]  George A. Kraus,et al.  A direct synthesis of 5-alkoxymethylfurfural ethers from fructose via sulfonic acid-functionalized ionic liquids , 2012 .

[27]  Robert J. Davis,et al.  Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodium-rhenium catalysts. , 2011, Journal of the American Chemical Society.

[28]  Michikazu Hara,et al.  Nb2O5·nH2O as a heterogeneous catalyst with water-tolerant Lewis acid sites. , 2011, Journal of the American Chemical Society.

[29]  Tao Zhang,et al.  Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. , 2008, Angewandte Chemie.

[30]  Dinghua Yu,et al.  Structural and catalytic investigation of mesoporous iron phosphate , 2007 .

[31]  Xuefeng Guo,et al.  Mesoporous nanotubes of iron phosphate: synthesis, characterization, and catalytic property. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[32]  K. Tanabe Catalytic Application of Niobium Compounds , 2003 .

[33]  Ulf Schuchardt,et al.  Cooperative effect of cobalt acetylacetonate and silica in the catalytic cyclization and oxidation of fructose to 2,5-furandicarboxylic acid , 2003 .

[34]  A. Pijpers,et al.  An X-Ray Photoelectron Spectroscopy Study of the Acidity of SiO2–ZrO2Mixed Oxides , 1996 .

[35]  S. Okazaki,et al.  VARIOUS REACTIONS CATALYZED BY NIOBIUM COMPOUNDS AND MATERIALS , 1995 .

[36]  L. Kenne,et al.  The formation of 2-furaldehyde and formic acid from pentoses in slightly acidic deuterium oxide studied by 1H NMR spectroscopy , 1995 .

[37]  Michael Jerry Antal,et al.  Mechanism of formation of 2-furaldehyde from d-xylose , 1991 .

[38]  G. N. Richards,et al.  Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from D-fructose an sucrose. , 1990, Carbohydrate research.