On the robustness of periodic solutions in relay feedback systems

Structural robustness of limit cycles in relay feedback systems is studied. Motivated by a recent discovery of a novel class of bifurcations in these systems, it is illustrated through numerical simulation that small relay perturbations may change the appearance of closed orbits dramatically. It is shown analytically that certain stable periodic solutions in relay feedback systems are robust to relay perturbations.

[1]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[2]  Irmgard Flugge-Lotz,et al.  Discontinuous Automatic Control , 1953 .

[3]  Mario di Bernardo,et al.  On the existence of stable asymmetric limit cycles and chaos in unforced symmetric relay feedback systems , 2001, 2001 European Control Conference (ECC).

[4]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[5]  J. Murdock Perturbations: Theory and Methods , 1987 .

[6]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[7]  S. E. Khaikin,et al.  Theory of Oscillators , 1966 .

[8]  Mario di Bernardo,et al.  Sliding bifurcations: a Novel Mechanism for the Sudden Onset of Chaos in dry Friction oscillators , 2003, Int. J. Bifurc. Chaos.

[9]  Tryphon T. Georgiou,et al.  Dynamics of relay relaxation oscillators , 2001, IEEE Trans. Autom. Control..

[10]  R. Schreier,et al.  Delta-sigma data converters : theory, design, and simulation , 1997 .

[11]  Tryphon T. Georgiou,et al.  Robustness of a relaxation oscillator , 2000 .

[12]  K. Henrik,et al.  Limit Cycles with Chattering in Relay Feedback Systems , 1997 .

[13]  Karl Henrik Johansson,et al.  Self-oscillations and sliding in Relay Feedback Systems: Symmetry and bifurcations , 2001, Int. J. Bifurc. Chaos.

[14]  A. Megretski Global Stability of Oscillations Induced by a Relay Feedback , 1996 .

[15]  A. Megretski,et al.  Global stability of relay feedback systems , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[16]  Mario di Bernardo,et al.  On a Novel Class of Bifurcations in Hybrid Dynamical Systems , 2001, HSCC.

[17]  Karl Johan Åström,et al.  Oscillations in Systems with Relay Feedback , 1993 .

[18]  Hassan K. Khalil,et al.  Singular perturbation methods in control : analysis and design , 1986 .

[19]  George C. Verghese,et al.  Nonlinear Phenomena in Power Electronics , 2001 .

[20]  I︠a︡. Z. T︠S︡ypkin Relay Control Systems , 1985 .

[21]  Arie Levant,et al.  Higher order sliding modes as a natural phenomenon in control theory , 1996 .

[22]  Karl Henrik Johansson,et al.  Fast switches in relay feedback systems , 1999, Autom..