New constructions of large cyclic subspace codes and Sidon spaces

Abstract Let n be a positive integer with a factor k such that n ≥ 3 k . Let q be a prime power, and let G q ( n , k ) be the set of all k -dimensional F q -subspaces of the field F q n . In this paper, we construct cyclic subspace codes in G q ( n , k ) with minimum distance 2 k − 2 and size ( ⌈ n 2 k ⌉ − 1 ) ⋅ ( q n − 1 ) q k q − 1 . In the case n = 3 k , their sizes differ from the sphere-packing bound for subspace codes by a factor of 1 q − 1 asymptotically as k goes to infinity. Our construction makes use of variants of the Sidon spaces constructed by Roth et al. (2018) and analogous to the results they attained for the case n = 2 k . We also establish the existence of Sidon spaces of G q ( 7 k , 2 k ) , and thus we resolve part of the conjecture about the existence of cyclic subspace codes in G q ( n , k ) with minimum distance 2 k − 2 and size q n − 1 q − 1 .

[1]  Heide Gluesing-Luerssen,et al.  Distance Distributions of Cyclic Orbit Codes , 2019, ArXiv.

[2]  Heide Gluesing-Luerssen,et al.  Cyclic orbit codes and stabilizer subfields , 2015, Adv. Math. Commun..

[3]  Qin Yue,et al.  Several kinds of large cyclic subspace codes via Sidon spaces , 2020, Discret. Math..

[4]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2008, IEEE Trans. Inf. Theory.

[5]  Rudolf Lide,et al.  Finite fields , 1983 .

[6]  Eli Ben-Sasson,et al.  Subspace Polynomials and Cyclic Subspace Codes , 2016, IEEE Trans. Inf. Theory.

[7]  Ron M. Roth,et al.  Construction of Sidon Spaces With Applications to Coding , 2017, IEEE Transactions on Information Theory.

[8]  Christine Bachoc,et al.  An analogue of Vosper's theorem for extension fields , 2015, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  Hongwei Liu,et al.  Constructions of cyclic constant dimension codes , 2017, Des. Codes Cryptogr..

[10]  Sascha Kurz,et al.  Construction of Large Constant Dimension Codes with a Prescribed Minimum Distance , 2008, MMICS.

[11]  Martin Bossert,et al.  Decoding of random network codes , 2010, Probl. Inf. Transm..

[12]  Joachim Rosenthal,et al.  Cyclic Orbit Codes , 2011, IEEE Transactions on Information Theory.

[13]  Alexander Vardy,et al.  Error-Correcting Codes in Projective Space , 2011, IEEE Trans. Inf. Theory.

[14]  Wei Zhao,et al.  A characterization of cyclic subspace codes via subspace polynomials , 2019, Finite Fields Their Appl..

[15]  Ferruh Özbudak,et al.  Cyclic subspace codes via subspace polynomials , 2017, Des. Codes Cryptogr..

[16]  P. Östergård,et al.  EXISTENCE OF $q$ -ANALOGS OF STEINER SYSTEMS , 2013, Forum of Mathematics, Pi.