Crossover behavior of the thermal conductance and Kramers’ transition rate theory

[1]  P. Hänggi,et al.  1D momentum-conserving systems: the conundrum of anomalous versus normal heat transport , 2014, 1407.1161.

[2]  B. Hong,et al.  Length-dependent thermal conductivity in suspended single-layer graphene , 2014, Nature Communications.

[3]  Gang Zhang,et al.  Thermal transport in nanostructures , 2012, 1301.2409.

[4]  K. Velizhanin,et al.  Tunable thermal switching via DNA-based nano-devices , 2012, Nanotechnology.

[5]  Xincheng Xie,et al.  Quantum phase transitions and coherent tunneling in a bilayer of ultracold atoms with dipole interactions , 2012 .

[6]  Gang Zhang,et al.  Anomalous heat conduction and anomalous diffusion in low dimensional nanoscale systems , 2012, 1205.3065.

[7]  A. Roy,et al.  Two-temperature nonequilibrium molecular dynamics simulation of thermal transport across metal-nonmetal interfaces , 2012 .

[8]  S. Ahzi,et al.  Nitrogen doping and curvature effects on thermal conductivity of graphene: A non-equilibrium molecular dynamics study , 2012 .

[9]  D. Hennig,et al.  Collective transport of coupled particles , 2012 .

[10]  Gang Zhang,et al.  Colloquium : Phononics: Manipulating heat flow with electronic analogs and beyond , 2011, 1108.6120.

[11]  J. Felba,et al.  Non-equilibrium molecular dynamics simulation of heat transfer in carbon nanotubes - verification and model validation , 2011, 2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems.

[12]  Massimiliano Di Ventra,et al.  Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions , 2011 .

[13]  K. Velizhanin,et al.  Driving denaturation: nanoscale thermal transport as a probe of DNA melting. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  George L. Barnes,et al.  Model non-equilibrium molecular dynamics simulations of heat transfer from a hot gold surface to an alkylthiolate self-assembled monolayer. , 2010, Physical chemistry chemical physics : PCCP.

[15]  J. Lloyd,et al.  Non-Equilibrium Molecular Dynamics Study of Thermal Energy Transport in Au-SAM-Au junctions , 2009, 0905.2154.

[16]  T. Ohara,et al.  Thermal conductivity of silicon nanowire by nonequilibrium molecular dynamics simulations , 2009 .

[17]  M. Di Ventra,et al.  Fourier's law: insight from a simple derivation. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  A. Dhar Heat transport in low-dimensional systems , 2008, 0808.3256.

[19]  Li Shi,et al.  Molecular dynamics simulation of thermal transport at a nanometer scale constriction in silicon , 2007 .

[20]  H Germany,et al.  Microscopic Quantum Mechanical Foundation of Fourier's Law , 2006, cond-mat/0611612.

[21]  Subhashis Banerjee,et al.  Classical limit of master equation for a harmonic oscillator coupled to an oscillator bath with separable initial conditions. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  S. Olla,et al.  Fourier’s Law for a Microscopic Model of Heat Conduction , 2005 .

[23]  M. Buchanan Heated debate in different dimensions , 2005 .

[24]  G. Berman,et al.  The Fermi-Pasta-Ulam problem: fifty years of progress. , 2004, Chaos.

[25]  G. Berman,et al.  The Fermi-Pasta-Ulam problem: fifty years of progress. , 2004, Chaos.

[26]  A. Nitzan,et al.  Thermal conductance through molecular wires , 2003, physics/0306187.

[27]  G. Casati,et al.  Controlling the energy flow in nonlinear lattices: a model for a thermal rectifier. , 2002, Physical review letters.

[28]  A. Politi,et al.  Thermal conduction in classical low-dimensional lattices , 2001, cond-mat/0112193.

[29]  A. Dhar Heat conduction in the disordered harmonic chain revisited. , 2001, Physical review letters.

[30]  N. Stern,et al.  Fifty years of development , 2000 .

[31]  J. Lebowitz,et al.  Fourier's Law: a Challenge for Theorists , 2000, math-ph/0002052.

[32]  V. I. Mel'Nikov,et al.  The Kramers problem : fifty years of development , 1991 .

[33]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[34]  Bishop,et al.  Statistical mechanics of a nonlinear model for DNA denaturation. , 1989, Physical review letters.

[35]  J. Lebowitz,et al.  Heat flow in regular and disordered harmonic chains , 1971 .

[36]  H. Nakazawa On the Lattice Thermal Conduction , 1970 .

[37]  S. Ulam,et al.  Studies of nonlinear problems i , 1955 .

[38]  G. Gallavotti The Fermi-Pasta-Ulam problem : a status report , 2008 .

[39]  Giovanni Gallavotti,et al.  The Fermi-Pasta-Ulam Problem , 2008 .

[40]  Bishop,et al.  Dynamics and thermodynamics of a nonlinear model for DNA denaturation. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[41]  Bishop,et al.  Entropy-driven DNA denaturation. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[42]  P. L. Kapitza,et al.  THE STUDY OF HEAT TRANSFER IN HELIUM II , 1971 .