Using possibilistic logic for modeling qualitative decision: Answer Set Programming algorithms

A qualitative approach to decision making under uncertainty has been proposed in the setting of possibility theory, which is based on the assumption that levels of certainty and levels of priority (for expressing preferences) are commensurate. In this setting, pessimistic and optimistic decision criteria have been formally justified. This approach has been transposed into possibilistic logic in which the available knowledge is described by formulas which are more or less certainly true and the goals are described in a separate prioritized base. This paper adapts the possibilistic logic handling of qualitative decision making under uncertainty in the Answer Set Programming (ASP) setting. We show how weighted beliefs and prioritized preferences belonging to two separate knowledge bases can be handled in ASP by modeling qualitative decision making in terms of abductive logic programming where (uncertain) knowledge about the world and prioritized preferences are encoded as possibilistic definite logic programs and possibilistic literals respectively. We provide ASP-based and possibilistic ASP-based algorithms for calculating optimal decisions and utility values according to the possibilistic decision criteria. We describe a prototype implementing the algorithms proposed on top of different ASP solvers and we discuss the complexity of the different implementations.

[1]  John Wylie Lloyd,et al.  Foundations of Logic Programming , 1987, Symbolic Computation.

[2]  Didier Dubois,et al.  Practical Handling of Exception-Tainted Rules and Independence Information in Possibilistic Logic , 1998, Applied Intelligence.

[3]  Judea Pearl,et al.  Specification and Evaluation of Preferences Under Uncertainty , 1994, KR.

[4]  Antonis C. Kakas,et al.  Abduction in logic programming , 2002 .

[5]  Ilkka Niemelä,et al.  Smodels - An Implementation of the Stable Model and Well-Founded Semantics for Normal LP , 1997, LPNMR.

[6]  Francesco Scarcello,et al.  Abductive logic programs with penalization: semantics, complexity and implementation , 2003, Theory and Practice of Logic Programming.

[7]  Juan Carlos Nieves,et al.  A Possibilistic Argumentation Decision Making Framework with Default Reasoning , 2011, Fundam. Informaticae.

[8]  Gerald Pfeifer,et al.  The KR System dlv: Progress Report, Comparisons and Benchmarks , 1998, KR.

[9]  Salem Benferhat,et al.  Qualitative choice logic , 2004, Artif. Intell..

[10]  Henri Prade,et al.  Answer Set Programming for Computing Decisions Under Uncertainty , 2011, ECSQARU.

[11]  Henri Prade,et al.  A possibilistic logic view of preference queries to an uncertain database , 2010, International Conference on Fuzzy Systems.

[12]  Juan Carlos Nieves,et al.  Dealing with explicit preferences and uncertainty in answer set programming , 2012, Annals of Mathematics and Artificial Intelligence.

[13]  Martin Gebser,et al.  Conflict-Driven Answer Set Solving , 2007, IJCAI.

[14]  John Fox,et al.  Argumentation-Based Inference and Decision Making--A Medical Perspective , 2007, IEEE Intelligent Systems.

[15]  Craig Boutilier,et al.  Toward a Logic for Qualitative Decision Theory , 1994, KR.

[16]  Gerhard Brewka,et al.  Answer Sets and Qualitative Decision Making , 2005, Synthese.

[17]  Ilkka Niemelä,et al.  Logic Programs with Ordered Disjunction , 2004, Comput. Intell..

[18]  Wolfgang Faber,et al.  The DLV system for knowledge representation and reasoning , 2002, TOCL.

[19]  Didier Dubois,et al.  Possibility Theory as a Basis for Qualitative Decision Theory , 1995, IJCAI.

[20]  Daniel Le Berre,et al.  On the Relationship Between Qualitative Choice Logic and Possibilistic Logic , 2004 .

[21]  Didier Dubois,et al.  Possibilistic logic : a retrospective and prospective view , 2003 .

[22]  Didier Dubois,et al.  Decision-theoretic foundations of qualitative possibility theory , 2001, Eur. J. Oper. Res..

[23]  Pascal Nicolas,et al.  Dealing Automatically with Exceptions by Introducing Specificity in ASP , 2009, ECSQARU.

[24]  J. Schreiber Foundations Of Statistics , 2016 .

[25]  Ilkka Niemelä,et al.  The Smodels System , 2001, LPNMR.

[26]  Didier Dubois,et al.  A Possibilistic Logic Machinery for Qualitative Decision , 1997, AAAI 1997.

[27]  Henri Prade,et al.  Encoding Preference Queries to an Uncertain Database in Possibilistic Answer Set Programming , 2012, IPMU.

[28]  Judea Pearl,et al.  System Z: a Natural Ordering of Defaults with Tractable Applications to Nonmonotonic Reasoning^ , 1990 .

[29]  Didier Dubois,et al.  Using Possibilistic Logic for Modeling Qualitative Decision: ATMS-based Algorithms , 1999, Fundam. Informaticae.

[30]  Francesco Buccafurri,et al.  Enhancing Disjunctive Datalog by Constraints , 2000, IEEE Trans. Knowl. Data Eng..

[31]  Judea Pearl,et al.  Qualitative Decision Theory , 1994, AAAI.

[32]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[33]  Wolfgang Faber,et al.  The Diagnosis Frontend of the dlv System , 1999, AI Commun..

[34]  Chitta Baral,et al.  Knowledge Representation, Reasoning and Declarative Problem Solving , 2003 .

[35]  Timo Soininen,et al.  Extending and implementing the stable model semantics , 2000, Artif. Intell..

[36]  Chitta Baral Knowledge Representation, Reasoning and Declarative Problem Solving: Query answering and answer set computing systems , 2003 .

[37]  Georg Gottlob,et al.  On the computational cost of disjunctive logic programming: Propositional case , 1995, Annals of Mathematics and Artificial Intelligence.

[38]  Régis Sabbadin Decision As Abduction? , 1998, ECAI.

[39]  Igor Stéphan,et al.  Possibilistic uncertainty handling for answer set programming , 2006, Annals of Mathematics and Artificial Intelligence.

[40]  Henri Prade,et al.  Using arguments for making and explaining decisions , 2009, Artif. Intell..

[41]  J. W. Lloyd,et al.  Foundations of logic programming; (2nd extended ed.) , 1987 .

[42]  Jon Doyle,et al.  Background to Qualitative Decision Theory , 1999, AI Mag..

[43]  H. Prade,et al.  Possibilistic logic , 1994 .

[44]  Didier Dubois,et al.  Representing Default Rules in Possibilistic Logic , 1992, KR.

[45]  Rafal Grabos,et al.  Qualitative Model of Decision Making , 2004, AIMSA.

[46]  Didier Dubois,et al.  Fuzzy constraints in job-shop scheduling , 1995, J. Intell. Manuf..

[47]  Henri Prade,et al.  Handling Exceptions in Logic Programming without Negation as Failure , 2011, ECSQARU.

[48]  Miroslaw Truszczynski,et al.  Answer Set Optimization , 2003, IJCAI.

[49]  Blai Bonet,et al.  Arguing for Decisions: A Qualitative Model of Decision Making , 1996, UAI.

[50]  Ronen I. Brafman,et al.  On the Foundations of Qualitative Decision Theory , 1996, AAAI/IAAI, Vol. 2.

[51]  Rafal Grabos,et al.  Answer Set Programming and Combinatorial multicriteria Decision Making , 2006, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[52]  Gerhard Brewka,et al.  Answer Sets and Qualitative Optimization , 2006, Log. J. IGPL.

[53]  Francesco Ricca,et al.  ASPIDE: Integrated Development Environment for Answer Set Programming , 2011, LPNMR.

[54]  Paolo Mancarella,et al.  Abductive Logic Programming , 1992, LPNMR.

[55]  Paul-Amaury Matt,et al.  Argumentation as a practical foundation for decision theory , 2010 .

[56]  Georg Gottlob,et al.  Abduction from Logic Programs: Semantics and Complexity , 1997, Theor. Comput. Sci..

[57]  Francesca Toni,et al.  Argumentation and answer set programming , 2011 .

[58]  L. J. Savage,et al.  The Foundations of Statistics , 1955 .

[59]  Dov M. Gabbay,et al.  Handbook of Logic in Artificial Intelligence and Logic Programming: Volume 3: Nonmonotonic Reasoning and Uncertain Reasoning , 1994 .