k-Subgraph Isomorphism on AC0 Circuits
暂无分享,去创建一个
[1] Alan M. Frieze,et al. Random graphs , 2006, SODA '06.
[2] Svatopluk Poljak,et al. On the complexity of the subgraph problem , 1985 .
[3] Michael Sipser,et al. Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).
[4] Jaroslav Nesetril,et al. Linear time low tree-width partitions and algorithmic consequences , 2006, STOC '06.
[5] Akira Maruoka,et al. The Potential of the Approximation Method , 2004, SIAM J. Comput..
[6] Svante Janson,et al. Poisson Approximation for Large Deviations , 1990, Random Struct. Algorithms.
[7] Johan Håstad,et al. Almost optimal lower bounds for small depth circuits , 1986, STOC '86.
[8] Don Coppersmith,et al. Matrix multiplication via arithmetic progressions , 1987, STOC.
[9] Ingo Wegener,et al. The complexity of Boolean functions , 1987 .
[10] A. Yao. Separating the polynomial-time hierarchy by oracles , 1985 .
[11] Matthias P. Krieger. On the Incompressibility of Monotone DNFs , 2005, Theory of Computing Systems.
[12] Joel Friedman. Constructing O(n log n) Size Monotone Formulae for the k-th Threshold Function of n Boolean Variables , 1986, SIAM J. Comput..
[13] Kazuyuki Amano. k-Subgraph Isomorphism on AC0 Circuits , 2009, Computational Complexity Conference.
[14] David Eppstein,et al. The Polyhedral Approach to the Maximum Planar Subgraph Problem: New Chances for Related Problems , 1994, GD.
[15] Paul Beame. Lower bounds for recognizing small cliques on CRCW PRAM's , 1990, Discret. Appl. Math..
[16] Benjamin Rossman,et al. On the constant-depth complexity of k-clique , 2008, STOC.
[17] Hans L. Bodlaender,et al. Discovering Treewidth , 2005, SOFSEM.
[18] David Eppstein. Diameter and Treewidth in Minor-Closed Graph Families , 2000, Algorithmica.
[19] Mam Riess Jones. Color Coding , 1962, Human factors.