Quantum Approximate Optimization for Hard Problems in Linear Algebra

The quantum approximate optimization algorithm (QAOA) by Farhi et al. is a quantum computational framework for solving quantum or classical optimization tasks. Here, we explore using QAOA for binary linear least squares (BLLS); a problem that can serve as a building block of several other hard problems in linear algebra, such as the non-negative binary matrix factorization (NBMF) and other variants of the non-negative matrix factorization (NMF) problem. Most of the previous efforts in quantum computing for solving these problems were done using the quantum annealing paradigm. For the scope of this work, our experiments were done on noiseless quantum simulators, a simulator including a device-realistic noise-model, and two IBM Q 5-qubit machines. We highlight the possibilities of using QAOA and QAOA-like variational algorithms for solving such problems, where trial solutions can be obtained directly as samples, rather than being amplitude-encoded in the quantum wavefunction. Our numerics show that even for a small number of steps, simulated annealing can outperform QAOA for BLLS at a QAOA depth of p\leq3p≤3 for the probability of sampling the ground state. Finally, we point out some of the challenges involved in current-day experimental implementations of this technique on cloud-based quantum computers.

[1]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[2]  S. Lloyd,et al.  Architectures for a quantum random access memory , 2008, 0807.4994.

[3]  Utkarsh,et al.  Solving Vehicle Routing Problem Using Quantum Approximate Optimization Algorithm , 2020 .

[4]  Laurent Jacques,et al.  Robust 1-Bit Compressive Sensing via Binary Stable Embeddings of Sparse Vectors , 2011, IEEE Transactions on Information Theory.

[5]  Velimir V. Vesselinov,et al.  ToQ.jl: A high-level programming language for D-Wave machines based on Julia , 2016, 2016 IEEE High Performance Extreme Computing Conference (HPEC).

[6]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[7]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[8]  Hua Xiang,et al.  Quantum algorithm for total least squares data fitting , 2019, Physics Letters A.

[9]  Prasanna Date,et al.  Adiabatic quantum linear regression , 2020, Scientific Reports.

[10]  Sunduz Keles,et al.  Sparse Partial Least Squares Classification for High Dimensional Data , 2010, Statistical applications in genetics and molecular biology.

[11]  Andrew W. Cross,et al.  Validating quantum computers using randomized model circuits , 2018, Physical Review A.

[12]  Ashley Montanaro,et al.  Quantum algorithms and the finite element method , 2015, 1512.05903.

[13]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[14]  P. Alam ‘T’ , 2021, Composites Engineering: An A–Z Guide.

[15]  Patrick J. Coles,et al.  Variational Quantum Linear Solver. , 2020 .

[16]  Stéphane Chrétien,et al.  Using the eigenvalue relaxation for binary least-squares estimation problems , 2009, Signal Process..

[17]  Nicolas Gillis,et al.  Introduction to Nonnegative Matrix Factorization , 2017, ArXiv.

[18]  Timothy W. Finin,et al.  Quantum Annealing Based Binary Compressive Sensing with Matrix Uncertainty , 2019, ArXiv.

[19]  Nikolaos V. Sahinidis,et al.  Derivative-free optimization: a review of algorithms and comparison of software implementations , 2013, J. Glob. Optim..

[20]  P. Alam ‘N’ , 2021, Composites Engineering: An A–Z Guide.

[21]  Iordanis Kerenidis,et al.  Quantum Recommendation Systems , 2016, ITCS.

[22]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[23]  Juan Pino,et al.  Progress toward scalable quantum computing at Honeywell Quantum Solutions , 2019 .

[24]  C. Joblin,et al.  Analysis of the emission of very small dust particles from Spitzer spectro-imagery data using blind signal separation methods , 2007 .

[25]  F. Barahona On the computational complexity of Ising spin glass models , 1982 .

[26]  Nicolas Gillis Nonnegative Matrix Factorization , 2020 .

[27]  ChoiVicky Minor-embedding in adiabatic quantum computation , 2008 .

[28]  Nikolaos V. Sahinidis,et al.  Simulation optimization: a review of algorithms and applications , 2014, 4OR.

[29]  Alán Aspuru-Guzik,et al.  Bayesian network structure learning using quantum annealing , 2014, The European Physical Journal Special Topics.

[30]  Ming-Feng Wu,et al.  Hybrid classical-quantum linear solver using Noisy Intermediate-Scale Quantum machines , 2019, Scientific Reports.

[31]  Björn E. Ottersten,et al.  Robust binary least squares: Relaxations and algorithms , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[32]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[33]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[34]  Ying Li,et al.  Variational algorithms for linear algebra. , 2019, Science bulletin.

[35]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[36]  Michael Unser,et al.  Binary Compressed Imaging , 2013, IEEE Transactions on Image Processing.

[37]  A. Amendola,et al.  Low Rank Non-Negative Matrix Factorization with D-Wave 2000Q , 2018, 1808.08721.

[38]  J. Biamonte,et al.  Reachability Deficits in Quantum Approximate Optimization of Graph Problems , 2020, Quantum.

[39]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[40]  Chih-Jen Lin,et al.  Projected Gradient Methods for Nonnegative Matrix Factorization , 2007, Neural Computation.

[41]  Thierry Mora,et al.  Diversity of immune strategies explained by adaptation to pathogen statistics , 2015, Proceedings of the National Academy of Sciences.

[42]  F. Hadlock,et al.  Finding a Maximum Cut of a Planar Graph in Polynomial Time , 1975, SIAM J. Comput..

[43]  Jonas Mockus,et al.  On Bayesian Methods for Seeking the Extremum , 1974, Optimization Techniques.

[44]  Seth Lloyd,et al.  Quantum algorithm for data fitting. , 2012, Physical review letters.

[45]  Tyler H. Chang,et al.  Least-squares solutions to polynomial systems of equations with quantum annealing , 2019, Quantum Information Processing.

[46]  Lars Kai Hansen,et al.  Mining the posterior cingulate: Segregation between memory and pain components , 2005, NeuroImage.

[47]  Stéphane Chrétien,et al.  Least Squares Reconstruction of Binary Images using Eigenvalue Optimization , 2002, COMPSTAT.

[48]  Jordi Vitrià,et al.  Non-negative Matrix Factorization for Face Recognition , 2002, CCIA.

[49]  V. Akshay,et al.  Reachability Deficits in Quantum Approximate Optimization , 2019, Physical review letters.

[50]  A. Harrow,et al.  Quantum Supremacy through the Quantum Approximate Optimization Algorithm , 2016, 1602.07674.

[51]  Jaegul Choo,et al.  Nonnegative Matrix Factorization for Interactive Topic Modeling and Document Clustering , 2014 .

[52]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[53]  Scott Aaronson,et al.  Guest Column: NP-complete problems and physical reality , 2005, SIGA.

[54]  P. Alam ‘K’ , 2021, Composites Engineering.

[55]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[56]  J. D. Wong-Campos,et al.  Benchmarking an 11-qubit quantum computer , 2019, Nature Communications.

[57]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[58]  B. D. Clader,et al.  Preconditioned quantum linear system algorithm. , 2013, Physical review letters.

[59]  Fred Glover,et al.  Tabu Search: A Tutorial , 1990 .

[60]  S. Aaronson Read the fine print , 2015, Nature Physics.

[61]  Samuel J. Lomonaco,et al.  Analyzing the Quantum Annealing Approach for Solving Linear Least Squares Problems , 2018, WALCOM.

[62]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[63]  Henk Polinder,et al.  Quantum Inspire: QuTech’s platform for co-development and collaboration in quantum computing , 2020 .

[64]  Lin Lin,et al.  Optimal polynomial based quantum eigenstate filtering with application to solving quantum linear systems , 2019, Quantum.

[65]  Daniel O'Malley,et al.  Reverse annealing for nonnegative/binary matrix factorization , 2021, PloS one.

[66]  U. Vazirani,et al.  How "Quantum" is the D-Wave Machine? , 2014, 1401.7087.

[67]  Xin Wang,et al.  Variational Quantum Singular Value Decomposition , 2020, ArXiv.

[68]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[69]  Hartmut Neven,et al.  Optimizing Variational Quantum Algorithms using Pontryagin's Minimum Principle , 2016, ArXiv.

[70]  Travis S. Humble,et al.  Quantum annealing for systems of polynomial equations , 2018, Scientific Reports.

[71]  Scott Pakin,et al.  Quantum Algorithm Implementations for Beginners , 2018, ACM Transactions on Quantum Computing.

[72]  Václav Šmídl,et al.  Bayesian Non-Negative Matrix Factorization With Adaptive Sparsity and Smoothness Prior , 2019, IEEE Signal Processing Letters.

[73]  A. Prakash,et al.  Quantum gradient descent for linear systems and least squares , 2017, Physical Review A.

[74]  Rupak Biswas,et al.  From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz , 2017, Algorithms.

[75]  B. Cipra The Ising Model Is NP-Complete , 2000 .

[76]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[77]  Alejandro Perdomo-Ortiz,et al.  Strengths and weaknesses of weak-strong cluster problems: A detailed overview of state-of-the-art classical heuristics versus quantum approaches , 2016, 1604.01746.

[78]  Seth Lloyd,et al.  Quantum random access memory. , 2007, Physical review letters.

[79]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[80]  P. Alam,et al.  H , 1887, High Explosives, Propellants, Pyrotechnics.

[81]  Mahabubul Alam,et al.  Analysis of Quantum Approximate Optimization Algorithm under Realistic Noise in Superconducting Qubits , 2019, ArXiv.

[82]  Leo Zhou,et al.  Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices , 2018, Physical Review X.

[83]  D. Bacon,et al.  Quantum approximate optimization of non-planar graph problems on a planar superconducting processor , 2020, Nature Physics.

[84]  Giacomo Nannicini,et al.  Improving Variational Quantum Optimization using CVaR , 2019, Quantum.

[85]  Alvin AuYoung,et al.  Presto: distributed machine learning and graph processing with sparse matrices , 2013, EuroSys '13.

[86]  Blake R. Johnson,et al.  Unsupervised Machine Learning on a Hybrid Quantum Computer , 2017, 1712.05771.

[87]  Seth Lloyd,et al.  Quantum algorithm for data fitting. , 2012, Physical review letters.

[88]  P. Love,et al.  MaxCut quantum approximate optimization algorithm performance guarantees for p>1 , 2021 .

[89]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[90]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[91]  Donghui Chen,et al.  Nonnegativity constraints in numerical analysis , 2009, The Birth of Numerical Analysis.

[92]  S. Roweis,et al.  K-Corrections and Filter Transformations in the Ultraviolet, Optical, and Near-Infrared , 2006, astro-ph/0606170.

[93]  Stephen A. Vavasis,et al.  On the Complexity of Nonnegative Matrix Factorization , 2007, SIAM J. Optim..

[94]  Patrick J. Coles,et al.  Variational Quantum Linear Solver: A Hybrid Algorithm for Linear Systems , 2019, 1909.05820.

[95]  David Von Dollen,et al.  Traffic Flow Optimization Using a Quantum Annealer , 2017, Front. ICT.

[96]  Gian Giacomo Guerreschi,et al.  QAOA for Max-Cut requires hundreds of qubits for quantum speed-up , 2018, Scientific Reports.

[97]  Cong Wang,et al.  Experimental evaluation of an adiabiatic quantum system for combinatorial optimization , 2013, CF '13.

[98]  Vicky Choi,et al.  Minor-embedding in adiabatic quantum computation: I. The parameter setting problem , 2008, Quantum Inf. Process..

[99]  Tamir Hazan,et al.  Non-negative tensor factorization with applications to statistics and computer vision , 2005, ICML.

[100]  Andrew M. Childs,et al.  Quantum Algorithm for Systems of Linear Equations with Exponentially Improved Dependence on Precision , 2015, SIAM J. Comput..

[101]  Velimir V. Vesselinov,et al.  Nonnegative/Binary matrix factorization with a D-Wave quantum annealer , 2017, PloS one.

[102]  Laurent Pueyo,et al.  Non-negative Matrix Factorization: Robust Extraction of Extended Structures , 2017, ArXiv.

[103]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[104]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[105]  Peter J. Love,et al.  Bounds on MAXCUT QAOA performance for p>1 , 2020 .

[106]  FUTURE OF PHYSICAL QUANTUM ANNEALERS: IMPEDIMENTS AND HOPES , 2019 .

[107]  Simone Severini,et al.  Quantum machine learning: a classical perspective , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[108]  C. T. Kelley,et al.  Implicit Filtering , 2011 .

[109]  Donald J Rose,et al.  Sparse Matrices and their Applications Proceedings of a Symposium on Sparse Matrices and Their Applications, held September 9-10, 1971, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, and sponsored by the Office of Naval Research, , 1972 .

[110]  van Aernout Enter Statistical Mechanics, A Short Treatise , 2000 .

[111]  Vicky Choi,et al.  Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design , 2010, Quantum Inf. Process..

[112]  L. Brady,et al.  Optimal Protocols in Quantum Annealing and Quantum Approximate Optimization Algorithm Problems. , 2021, Physical review letters.

[113]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[114]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[115]  Steven P. Reinhardt,et al.  Practical Annealing-Based Quantum Computing , 2019, Computer.

[116]  Kristan Temme,et al.  Error mitigation extends the computational reach of a noisy quantum processor , 2019, Nature.

[117]  Lin Lin,et al.  Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm , 2019, ArXiv.

[118]  F. Jin,et al.  Benchmarking the quantum approximate optimization algorithm , 2019, Quantum Inf. Process..

[119]  R. Willoughby Sparse matrices and their applications , 1972 .

[120]  J. Spall Implementation of the simultaneous perturbation algorithm for stochastic optimization , 1998 .

[121]  Fred W. Glover,et al.  Quantum Bridge Analytics I: a tutorial on formulating and using QUBO models , 2018, 4OR.

[122]  Andrew W. Cross,et al.  The IBM Q experience and QISKit open-source quantum computing software , 2018 .

[123]  P. K. Srijith,et al.  Adiabatic Quantum Feature Selection for Sparse Linear Regression , 2021, ICCS.

[124]  E. Rieffel,et al.  Quantum Computing: A Gentle Introduction , 2011 .