Aberrant tolerogenic functions and proinflammatory skew of dendritic cells in STAT1 gain-of-function patients may contribute to autoimmunity and fungal susceptibility.

[1]  A. Šedivá,et al.  Immunoprofiling of monocytes in STAT1 gain-of-function chronic mucocutaneous candidiasis , 2022, Frontiers in Immunology.

[2]  A. Šedivá,et al.  Immunogenicity and Safety of COVID-19 mRNA Vaccine in STAT1 GOF Patients , 2021, Journal of Clinical Immunology.

[3]  S. Piersma,et al.  Quantitative Phosphoproteomic Analysis Reveals Dendritic Cell- Specific STAT Signaling After α2-3–Linked Sialic Acid Ligand Binding , 2021, Frontiers in Immunology.

[4]  Xiaodong Zhao,et al.  Clinical Relevance of Gain- and Loss-of-Function Germline Mutations in STAT1: A Systematic Review , 2021, Frontiers in Immunology.

[5]  E. Ballestar,et al.  Tolerogenic Dendritic Cells in Autoimmunity and Inflammatory Diseases. , 2020, Trends in immunology.

[6]  J. Casanova,et al.  Human STAT1 Gain-of-Function Heterozygous Mutations: Chronic Mucocutaneous Candidiasis and Type I Interferonopathy , 2020, Journal of Clinical Immunology.

[7]  A. Šedivá,et al.  Neutrophil Extracellular Trap Induced Dendritic Cell Activation Leads to Th1 Polarization in Type 1 Diabetes , 2020, Frontiers in Immunology.

[8]  D. Hawiger,et al.  Natural and Induced Tolerogenic Dendritic Cells , 2020, The Journal of Immunology.

[9]  J. Casanova,et al.  Human Inborn Errors of Immunity: 2019 Update of the IUIS Phenotypical Classification , 2020, Journal of Clinical Immunology.

[10]  K. Tarbell,et al.  Dendritic Cells in Autoimmune Disease , 2020, The Autoimmune Diseases.

[11]  A. Šedivá,et al.  Monocytes contribute to DNA sensing through the TBK1 signaling pathway in type 1 diabetes patients. , 2019, Journal of autoimmunity.

[12]  M. V. van Zelm,et al.  Impaired STAT3-Dependent Upregulation of IL2Rα in B Cells of a Patient With a STAT1 Gain-of-Function Mutation , 2019, Front. Immunol..

[13]  L. Milani,et al.  Interferon signature in patients with STAT1 gain‐of‐function mutation is epigenetically determined , 2018, European journal of immunology.

[14]  Guang-Xian Zhang,et al.  Chloroquine‐treated dendritic cells require STAT1 signaling for their tolerogenic activity , 2018, European journal of immunology.

[15]  L. Ivashkiv IFNγ: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy , 2018, Nature Reviews Immunology.

[16]  T. Lawrence,et al.  Autophagy in dendritic cells , 2018, Cellular & Molecular Immunology.

[17]  Ivan K. Chinn,et al.  Ruxolitinib partially reverses functional natural killer cell deficiency in patients with signal transducer and activator of transcription 1 (STAT1) gain‐of‐function mutations , 2017, The Journal of allergy and clinical immunology.

[18]  S. Gessani,et al.  Dual requirement for STAT signaling in dendritic cell immunobiology. , 2018, Immunobiology.

[19]  L. Dotta,et al.  Impaired natural killer cell functions in patients with signal transducer and activator of transcription 1 (STAT1) gain‐of‐function mutations , 2017, The Journal of allergy and clinical immunology.

[20]  S. Holland,et al.  Autoimmune Regulator Deficiency Results in a Decrease in STAT1 Levels in Human Monocytes , 2017, Front. Immunol..

[21]  Dennis J. Wu,et al.  Autophagy and autoimmunity. , 2017, Clinical immunology.

[22]  F. Quintana,et al.  Tolerogenic dendritic cells , 2016, Seminars in Immunopathology.

[23]  P. Miossec,et al.  Altered dendritic cell functions in autoimmune diseases: distinct and overlapping profiles , 2016, Nature Reviews Rheumatology.

[24]  J. Casanova,et al.  Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. , 2016, Blood.

[25]  M. Shinohara,et al.  Roles of Autophagy and Autophagy-Related Proteins in Antifungal Immunity , 2016, Front. Immunol..

[26]  S. Smeekens,et al.  Gain‐of‐function STAT1 mutations impair STAT3 activity in patients with chronic mucocutaneous candidiasis (CMC) , 2015, European journal of immunology.

[27]  Y. Crow,et al.  Aicardi–Goutières syndrome and the type I interferonopathies , 2015, Nature Reviews Immunology.

[28]  You-Wen He,et al.  Autophagy enhances NFκB activity in specific tissue macrophages by sequestering A20 to boost antifungal immunity , 2014, Nature Communications.

[29]  T. Vyse,et al.  Autophagy is activated in systemic lupus erythematosus and required for plasmablast development , 2014, Annals of the rheumatic diseases.

[30]  Trim Lajqi,et al.  Chloroquine Promotes IL-17 Production by CD4+ T Cells via p38-Dependent IL-23 Release by Monocyte-Derived Langerhans-like Cells , 2014, The Journal of Immunology.

[31]  Lorenzo Galluzzi,et al.  Metabolic Control of Autophagy , 2014, Cell.

[32]  N. Eissa,et al.  Deficiency of Autophagy in Dendritic Cells Protects against Experimental Autoimmune Encephalomyelitis* , 2014, The Journal of Biological Chemistry.

[33]  V. Kuchroo,et al.  TGF-β Signaling Initiated in Dendritic Cells Instructs Suppressive Effects on Th17 Differentiation at the Site of Neuroinflammation , 2014, PloS one.

[34]  Virginia Pascual,et al.  Modular Transcriptional Repertoire Analyses of Adults With Systemic Lupus Erythematosus Reveal Distinct Type I and Type II Interferon Signatures , 2014, Arthritis & rheumatology.

[35]  C. Günther,et al.  Aicardi–Goutières syndrome: a model disease for systemic autoimmunity , 2014, Clinical and experimental immunology.

[36]  V. Kuchroo,et al.  IL-27 acts on DCs to suppress the T cell response and autoimmunity by inducing expression of the immunoregulatory molecule CD39 , 2013, Nature Immunology.

[37]  S. Holland,et al.  Gain-of-function STAT1 mutations are associated with PD-L1 overexpression and a defect in B-cell survival. , 2013, The Journal of allergy and clinical immunology.

[38]  J. Yim,et al.  Immune deficiencies, infection, and systemic immune disordersDominant gain-of-function STAT1 mutations in FOXP3 wild-type immune dysregulation–polyendocrinopathy–enteropathy–X-linked–like syndrome , 2013 .

[39]  S. Wirtz,et al.  Autophagy regulates TNFα-mediated joint destruction in experimental arthritis , 2012, Annals of the rheumatic diseases.

[40]  C. Cheadle,et al.  Precise probes of type II interferon activity define the origin of interferon signatures in target tissues in rheumatic diseases , 2012, Proceedings of the National Academy of Sciences.

[41]  A. Casadevall,et al.  Macrophage Autophagy in Immunity to Cryptococcus neoformans and Candida albicans , 2012, Infection and Immunity.

[42]  Gang Li,et al.  Autophagy promotes T-cell survival through degradation of proteins of the cell death machinery , 2011, Cell Death and Differentiation.

[43]  H. Virgin,et al.  Autophagy proteins regulate the secretory component of osteoclastic bone resorption. , 2011, Developmental cell.

[44]  Jeung-Hoon Lee,et al.  Autophagy Negatively Regulates Keratinocyte Inflammatory Responses via Scaffolding Protein p62/SQSTM1 , 2011, The Journal of Immunology.

[45]  S. Akira,et al.  Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production , 2008, Nature.

[46]  Sarah L. Brown,et al.  A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells , 2008, Nature.

[47]  D. Hommes,et al.  Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. , 2007, Immunity.

[48]  W. Holzgreve,et al.  Induction of neutrophil extracellular DNA lattices by placental microparticles and IL-8 and their presence in preeclampsia. , 2005, Human immunology.

[49]  S. Ebong,et al.  Dendritic Cell Maturation Requires STAT1 and Is under Feedback Regulation by Suppressors of Cytokine Signaling , 2004, The Journal of Immunology.

[50]  H. Ochs,et al.  The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3 , 2001, Nature Genetics.