A note on the directed genus of Kn, n, n and Kn

It is proved that a complete graph K n can have an orientation whose minimum directed genus is ⌈ 1 ⁄ 12 ( n - 3)( n - 4) ⌉  if and only if n ≡ 3, 7 (mod 12) . This answers a question of Bonnington et al. by using a method different from current graphs. It is also proved that a complete symmetric tripartite graph K n ,  n ,  n has an orientation whose minimum directed genus is 1 ⁄ 2 ( n - 1)( n - 2) .

[1]  Mike J. Grannell,et al.  A Construction for Biembeddings of Latin Squares , 2011, Electron. J. Comb..

[2]  Nora Hartsfield,et al.  The directed genus of the de Bruijn graph , 2009, Discret. Math..

[3]  Nguyen Huy Xuong,et al.  How to determine the maximum genus of a graph , 1979, J. Comb. Theory, Ser. B.

[4]  Carsten Thomassen,et al.  The Graph Genus Problem is NP-Complete , 1989, J. Algorithms.

[5]  Saul Stahl,et al.  Genus embeddings for some complete tripartite graphs , 1976, Discret. Math..

[6]  Jonathan L. Gross,et al.  Genus distribution of graphs under surgery: adding edges and splitting vertices , 2010 .

[7]  Arthur T. White,et al.  TOPOLOGICAL GRAPH THEORY (Wiley Interscience Series in Discrete Mathematics and Optimization) , 1988 .

[8]  Mike J. Grannell,et al.  Dihedral Biembeddings and Triangulations by Complete and Complete Tripartite Graphs , 2013, Graphs Comb..

[9]  Jozef Sirán,et al.  Obstructions to directed embeddings of Eulerian digraphs in the plane , 2004, Eur. J. Comb..

[10]  R Hao,et al.  Embeddable Properties of Digraphs in Orientable Surfaces , 2008 .

[11]  Saul Stahl Permutation-partition pairs. II. Bounds on the genus of the amalgamation of graphs , 1982 .

[12]  Jonathan L. Gross,et al.  Enumeration of digraph embeddings , 2014, Eur. J. Comb..

[13]  Mike J. Grannell,et al.  A lower bound for the number of orientable triangular embeddings of some complete graphs , 2010, J. Comb. Theory, Ser. B.

[14]  Arthur T. White,et al.  On the maximum genus of a graph , 1971 .

[15]  Jonathan L. Gross,et al.  Genus distributions for bouquets of circles , 1989, J. Comb. Theory, Ser. B.

[16]  Mike J. Grannell,et al.  BIEMBEDDINGS OF LATIN SQUARES AND HAMILTONIAN DECOMPOSITIONS , 2004, Glasgow Mathematical Journal.

[17]  Jin Ho Kwak,et al.  Total embedding distributions for bouquets of circles , 2002, Discret. Math..

[18]  Toufik Mansour,et al.  Embedding Distributions of Generalized Fan Graphs , 2013, Canadian Mathematical Bulletin.

[19]  Marston D. E. Conder,et al.  Embedding Digraphs on Orientable Surfaces , 2002, J. Comb. Theory, Ser. B.

[20]  Mike J. Grannell,et al.  A constraint on the biembedding of Latin squares , 2009, Eur. J. Comb..

[21]  Yanpei Liu,et al.  The genus distributions of directed antiladders in orientable surfaces , 2008, Appl. Math. Lett..

[22]  Jonathan L. Gross,et al.  Hierarchy for imbedding-distribution invariants of a graph , 1987, J. Graph Theory.

[23]  Rong-Xia Hao,et al.  The genus polynomials of cross-ladder digraphs in orientable surfaces , 2008 .

[24]  Mike J. Grannell,et al.  Triangulations of orientable surfaces by complete tripartite graphs , 2006, Discret. Math..