Algebraic and Geometric Tools to Compute Projective and Permutation Invariants

This paper studies the computation of projective invariants in pairs of images from uncalibrated cameras, and presents a detailed study of the projective and permutation invariants for configurations of points and/or lines. We give two basic computational approaches, one algebraic and one geometric, and also the relations between the invariants computed by different approaches. In each case, we show how to compute invariants in projective space assuming that the points and lines have already been reconstructed in an arbitrary projective basis, and also, how to compute them directly from image coordinates in a pair of views using only point and line correspondences and the fundamental matrix. Finally, we develop combinations of those projective invariants which are insensitive to permutations of the geometric primitives of each of the basic configurations.

[1]  O. Faugeras,et al.  Applications of non-metric vision to some visual guided tasks , 1994, Proceedings of the Intelligent Vehicles '94 Symposium.

[2]  Olivier D. Faugeras,et al.  A Comparison of Projective Reconstruction Methods for Pairs of Views , 1997, Comput. Vis. Image Underst..

[3]  Olivier D. Faugeras,et al.  From projective to Euclidean reconstruction , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[4]  Reiner Lenz,et al.  Correspondence of coplanar features through p/sup 2/-invariant representations , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[5]  C. Tisseron,et al.  Géométries affine, projective et euclidienne , 1983 .

[6]  U. Uenohara,et al.  Geometric invariants for verification in 3-D object tracking , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[7]  Gabriela Csurka,et al.  Modelisation projective des objets tridimensionnels en vision par ordinateur , 1996 .

[8]  Olivier D. Faugeras,et al.  Computing three dimensional project invariants from a pair of images using the Grassmann-Cayley algebra , 1998, Image Vis. Comput..

[9]  Luce Morin,et al.  Quelques contributions des invariants projectifs à la vision par ordinateur , 1993 .

[10]  J. G. Semple,et al.  Algebraic Projective Geometry , 1953 .

[11]  I. Reid,et al.  Metric calibration of a stereo rig , 1995, Proceedings IEEE Workshop on Representation of Visual Scenes (In Conjunction with ICCV'95).

[12]  R. Hartley Invariants of Lines in Space , 1993 .

[13]  Patrick Gros,et al.  3D projective invariants from two images , 1993, Optics & Photonics.

[14]  Fadi Dornaika,et al.  Visually guided object grasping , 1998, IEEE Trans. Robotics Autom..

[15]  Rachid Deriche,et al.  A Robust Technique for Matching two Uncalibrated Images Through the Recovery of the Unknown Epipolar Geometry , 1995, Artif. Intell..