Coupled drift-diffusion/quantum transmitting boundary method simulations of thin oxide devices with specific application to a silicon based tunnel switch diode

We present a method of coupling drift-diffusion simulations with quantum transmitting boundary method (QTBM) tunnel current calculations. This allows self-consistent simulation of thin oxide devices in which large tunnel currents can flow. Simulated results are presented for a thin oxide Al/SiO/sub 2//Si structure and an Al/SiO/sub 2//n-Si/p-Si tunnel switching diode. We demonstrate the careful use of the recombination lifetime as an adjustable or relaxable parameter in order to obtain converging solutions.

[1]  Christopher M. Snowden,et al.  Introduction To Semiconductor Device Modelling , 1998 .

[2]  E. S. Daniel,et al.  A transistorless-current-mode static RAM architecture , 1998, IEEE J. Solid State Circuits.

[3]  T. C. Mcgill,et al.  Dependence of the I-V curve of a metal insulator semiconductor switch on insulator thickness-an experimental and theoretical investigation , 1998 .

[4]  Y. Fang,et al.  An integrated PIN/MISS OEIC for high current photoreceiver applications , 1997 .

[5]  A novel silicon carbide based high-bidirectional switching device for high-voltage control applications , 1995 .

[6]  Harold Levy Application and Integration of Quantum-Effect Devices for Cellular VLSI , 1995 .

[7]  S. Nakagomi,et al.  Hydrogen-Sensitive Property of Switching Device with a Pd Si Tunnel Metal Insulator Semiconductor Structure , 1994 .

[8]  K. Ando,et al.  Mechanism of leakage current through the nanoscale SiO2 layer , 1994 .

[9]  An SnO2 based switching tunnel device for the detection of NO2 in air at the sub ppm level , 1994 .

[10]  William R. Frensley,et al.  Quantum Transport , 1998 .

[11]  Yu,et al.  Multiband treatment of quantum transport in interband tunnel devices. , 1992, Physical review. B, Condensed matter.

[12]  Bernd Meinerzhagen,et al.  A new nonlinear relaxation scheme for solving semiconductor device equations , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[13]  Craig S. Lent,et al.  The quantum transmitting boundary method , 1990 .

[14]  Shyh Wang,et al.  Fundamentals of semiconductor theory and device physics , 1989 .

[15]  M. R. Pinto,et al.  Continuation methods in semiconductor device simulation , 1989 .

[16]  S. Ang A power SIPOS MISS device , 1988 .

[17]  The MISS device modelling and influence of critical parameters , 1985 .

[18]  S. Selberherr Analysis and simulation of semiconductor devices , 1984 .

[19]  W.L. Engl,et al.  Device modeling , 1983, Proceedings of the IEEE.

[20]  D. Rose,et al.  Global approximate Newton methods , 1981 .

[21]  D. Rose,et al.  Parameter Selection for Newton-Like Methods Applicable to Nonlinear Partial Differential Equations , 1980 .

[22]  J. G. Simmons,et al.  Theory of switching in p-n-insulator (tunnel)-metal devices: Part I: Punchthrough mode , 1979 .

[23]  J. Simmons,et al.  Switching phenomena in metal-insulator-n/p+ structures: theory, experiment and applications , 1978 .

[24]  J. Shewchun,et al.  Equilibrium‐to‐nonequilibrium transition in MOS (surface oxide) tunnel diode , 1974 .

[25]  F. D. King,et al.  Minority carrier MIS tunnel diodes and their application to electron- and photo-voltaic energy conversion—I. Theory☆ , 1974 .

[26]  M. Morimoto,et al.  Thin‐MIS‐Structure Si Negative‐Resistance Diode , 1972 .

[27]  J. Shewchun,et al.  Non-equilibrium effects on metal-oxide-semiconductor tunnel currents☆ , 1971 .

[28]  M. Shur Physics of Semiconductor Devices , 1969 .

[29]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .

[30]  K. Hellwege,et al.  Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology , 1967 .

[31]  J. Simmons Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film , 1963 .

[32]  Walter A. Harrison,et al.  Tunneling from an Independent-Particle Point of View , 1961 .