Parking Functions, Empirical Processes, and the Width of Rooted Labeled Trees

This paper provides tight bounds for the moments of the width of rooted labeled trees with $n$ nodes, answering an open question of Odlyzko and Wilf (1987). To this aim, we use one of the many one-to-one correspondences between trees and parking functions, and also a precise coupling between parking functions and the empirical processes of mathematical statistics. Our result turns out to be a consequence of the strong convergence of empirical processes to the Brownian bridge (Komlos, Major and Tusnady, 1975).

[1]  Michael Drmota,et al.  On the profile of random trees , 1997, Random Struct. Algorithms.

[2]  David Aldous,et al.  Brownian excursions, critical random graphs and the multiplicative coalescent , 1997 .

[3]  D. Aldous Stochastic Analysis: The Continuum random tree II: an overview , 1991 .

[4]  P. Major,et al.  An approximation of partial sums of independent RV'-s, and the sample DF. I , 1975 .

[5]  J. Wellner,et al.  Empirical Processes with Applications to Statistics , 2009 .

[6]  P. Lam,et al.  Edge game coloring of graphs , 1999 .

[7]  Hal A. Kierstead,et al.  Planar Graph Coloring with an Uncooperative Partner , 1994, Planar Graphs.

[8]  A. Rényi,et al.  On the height of trees , 1967, Journal of the Australian Mathematical Society.

[9]  Claus Michael Ringel,et al.  Hall algebras and quantum groups , 1990 .

[10]  P. Erdös On a Problem in Graph Theory , 1963 .

[11]  Marcel Paul Schützenberger On an enumeration problem , 1968 .

[12]  N. Bingham INDEPENDENT AND STATIONARY SEQUENCES OF RANDOM VARIABLES , 1973 .

[13]  D. Aldous Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists , 1999 .

[14]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[15]  Donald E. Knuth Linear Probing and Graphs , 1998, Algorithmica.

[16]  Joel Spencer ENUMERATING GRAPHS AND BROWNIAN MOTION , 1997 .

[17]  Bernhard Keller,et al.  Deriving DG categories , 1994 .

[18]  Kai Lai Chung,et al.  Excursions in Brownian motion , 1976 .

[19]  Guy Louchard,et al.  Phase Transition for Parking Blocks, Brownian Excursion and Coalescence , 2022 .

[20]  Jim Pitman,et al.  Enumerations of trees and forests related to branching processes and random walks , 1997, Microsurveys in Discrete Probability.

[21]  Hans L. Bodlaender On the Complexity of Some Coloring Games , 1991, Int. J. Found. Comput. Sci..

[22]  Kenneth S. Brown,et al.  Abstract homotopy theory and generalized sheaf cohomology , 1973 .

[23]  J. Moon Topics on tournaments , 1968 .

[24]  Andrei Zelevinsky,et al.  Generalized associahedra via quiver representations , 2002, math/0205152.

[25]  Andrew M. Odlyzko,et al.  Bandwidths and profiles of trees , 1985, J. Comb. Theory, Ser. B.

[26]  John Riordan,et al.  Mappings of acyclic and parking functions , 1973 .

[27]  Dieter Happel,et al.  On the derived category of a finite-dimensional algebra , 1987 .

[28]  Xuding Zhu The Game Coloring Number of Planar Graphs , 1999, J. Comb. Theory, Ser. B.

[29]  P. Massart The Tight Constant in the Dvoretzky-Kiefer-Wolfowitz Inequality , 1990 .

[30]  Lajos Takács,et al.  Limit distributions for queues and random rooted trees , 1993 .

[31]  David Aldous,et al.  The Continuum Random Tree III , 1991 .

[32]  Xuding Zhu,et al.  Game chromatic number of outerplanar graphs , 1999 .

[33]  M. Yor,et al.  Valeurs principales associées aux temps locaux browniens , 1987 .

[34]  Michael Drmota,et al.  The Width Of Galton-Watson Trees , 1999 .

[35]  W. Vervaat,et al.  A Relation between Brownian Bridge and Brownian Excursion , 1979 .

[36]  Dieter Kratsch,et al.  The Complexity of Coloring Games on Perfect Graphs , 1992, Theor. Comput. Sci..

[37]  Philippe Flajolet,et al.  On the Analysis of Linear Probing Hashing , 1998, Algorithmica.

[38]  Philippe Flajolet,et al.  The Average Height of Binary Trees and Other Simple Trees , 1982, J. Comput. Syst. Sci..

[39]  J. Moon Counting labelled trees , 1970 .

[40]  I. Ibragimov,et al.  Independent and stationary sequences of random variables , 1971 .

[41]  André Raspaud,et al.  Good and Semi-Strong Colorings of Oriented Planar Graphs , 1994, Inf. Process. Lett..

[42]  U. Faigle,et al.  On the game chromatic number of some classes of graphs , 1991 .