B-series and Order Conditions for Exponential Integrators

We introduce a general format of numerical ODE-solvers which include many of the recently proposed exponential integrators. We derive a general order theory for these schemes in terms of $B$-series and bicolored rooted trees. To ease the construction of specific schemes we generalize an idea of Zennaro [{\em {Math. Comp.,}} 46 (1986), pp. 119--133] and define natural continuous extensions in the context of exponential integrators. This leads to a relatively easy derivation of some of the most popular recently proposed schemes. The general format of schemes considered here makes use of coefficient functions which will usually be selected from some finite dimensional function spaces. We will derive lower bounds for the dimension of these spaces in terms of the order of the resulting schemes. Finally, we illustrate the presented ideas by giving examples of new exponential integrators of orders 4 and 5.

[1]  Elena Celledoni,et al.  Commutator-free Lie group methods , 2003, Future Gener. Comput. Syst..

[2]  Lloyd N. Trefethen,et al.  Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..

[3]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[4]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[5]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[6]  A. Friedli Verallgemeinerte Runge-Kutta Verfahren zur Loesung steifer Differentialgleichungssysteme , 1978 .

[7]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[8]  S. Krogstad Generalized integrating factor methods for stiff PDEs , 2005 .

[9]  S. P. Nørsett An A-stable modification of the Adams-Bashforth methods , 1969 .

[10]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[11]  J. D. Lawson Generalized Runge-Kutta Processes for Stable Systems with Large Lipschitz Constants , 1967 .

[12]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[13]  T. E. Hull,et al.  Comparing Numerical Methods for Ordinary Differential Equations , 1972 .

[14]  I. N. Sneddon,et al.  The Solution of Ordinary Differential Equations , 1987 .

[15]  H. Munthe-Kaas,et al.  Computations in a free Lie algebra , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[16]  S. Cox,et al.  Exponential Time Differencing for Stiff Systems , 2002 .

[17]  H. Munthe-Kaas High order Runge-Kutta methods on manifolds , 1999 .

[18]  Marlis Hochbruck,et al.  Explicit Exponential Runge-Kutta Methods for Semilinear Parabolic Problems , 2005, SIAM J. Numer. Anal..

[19]  M. Zennaro Natural continuous extensions of Runge-Kutta methods , 1986 .

[20]  Marlis Hochbruck,et al.  Exponential Integrators for Large Systems of Differential Equations , 1998, SIAM J. Sci. Comput..

[21]  J. M. Sanz-Serna,et al.  Order conditions for numerical integrators obtained by composing simpler integrators , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[22]  T. Steihaug,et al.  An attempt to avoid exact Jacobian and nonlinear equations in the numerical solution of stiff differential equations , 1979 .

[23]  J. D. Lawson,et al.  Generalized Runge-Kutta Processes for Stiff Initial-value Problems† , 1975 .