A computational approach to an optimal partition problem on surfaces

We explore an optimal partition problem on surfaces using a computational approach. The problem is to minimise the sum of the first Dirichlet Laplace--Beltrami operator eigenvalues over a given number of partitions of a surface. We consider a method based on eigenfunction segregation and perform calculations using modern high performance computing techniques. We first test the accuracy of the method in the case of three partitions on the sphere then explore the problem for higher numbers of partitions and on other surfaces.

[1]  Farid Bozorgnia,et al.  Numerical Algorithm for Spatial Segregation of Competitive Systems , 2009, SIAM J. Sci. Comput..

[2]  Ralf Kornhuber,et al.  Nonsmooth Schur–Newton methods for multicomponent Cahn–Hilliard systems , 2015 .

[3]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[4]  Bernard Helffer,et al.  NUMERICAL SIMULATIONS FOR NODAL DOMAINS AND SPECTRAL MINIMAL PARTITIONS , 2010 .

[5]  Avetik Arakelyan,et al.  Numerical algorithms for a variational problem of the spatial segregation of reaction-diffusion systems , 2012, Appl. Math. Comput..

[6]  Dorin Bucur,et al.  N-Dimensional Shape Optimization under Capacitary Constraint , 1995 .

[7]  C. M. Elliott,et al.  Surface Finite Elements for Parabolic Equations , 2007 .

[8]  F. Lin,et al.  Nonlocal heat flows preserving the L2 energy , 2008 .

[9]  Giuseppe Buttazzo,et al.  An existence result for a class of shape optimization problems , 1993 .

[10]  Uwe F. Mayer,et al.  Gradient flows on nonpositively curved metric spaces and harmonic maps , 1998 .

[11]  Charles M. Elliott,et al.  Finite element methods for surface PDEs* , 2013, Acta Numerica.

[12]  Susanna Terracini,et al.  An optimal partition problem related to nonlinear eigenvalues , 2003 .

[13]  G. Dziuk Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .

[14]  Q. Du,et al.  ASYMPTOTIC ANALYSIS OF A DIFFUSE INTERFACE RELAXATION TO A NONLOCAL OPTIMAL PARTITION PROBLEM , 2010 .

[15]  Dorin Bucur,et al.  Optimal Partitions for Eigenvalues , 2009, SIAM J. Sci. Comput..

[16]  J. Sikora,et al.  Optimal shape design , 1999 .

[17]  Braxton Osting,et al.  Minimal Dirichlet Energy Partitions for Graphs , 2013, SIAM J. Sci. Comput..

[18]  Shu-Ming Chang,et al.  Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates , 2004 .

[19]  Susanna Terracini,et al.  A variational problem for the spatial segregation of reaction-diffusion systems , 2003 .

[20]  F. Lin,et al.  Numerical approximations of a norm-preserving gradient flow and applications to an optimal partition problem , 2008 .

[21]  F. Lin,et al.  Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries , 2008 .

[22]  Peter Bastian,et al.  The Iterative Solver Template Library , 2006, PARA.

[23]  Qiang Du,et al.  Computing the Ground State Solution of Bose-Einstein Condensates by a Normalized Gradient Flow , 2003, SIAM J. Sci. Comput..

[24]  Tai-Chia Lin,et al.  On Phase-Separation Models: Asymptotics and Qualitative Properties , 2013 .

[25]  Andreas Dedner,et al.  A generic interface for parallel and adaptive discretization schemes: abstraction principles and the Dune-Fem module , 2010, Computing.

[26]  Susanna Terracini,et al.  Nehari's problem and competing species systems , 2002 .

[27]  Andreas Dedner,et al.  A generic grid interface for parallel and adaptive scientific computing. Part I: abstract framework , 2008, Computing.

[28]  B. Helffer,et al.  Remarks on two notions of spectral minimal partitions , 2009 .

[29]  L. A. Cafferelli,et al.  An Optimal Partition Problem for Eigenvalues , 2007, J. Sci. Comput..

[30]  B. Helffer,et al.  the sphere , 2009 .

[31]  Andreas Dedner,et al.  A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE , 2008, Computing.

[32]  Susanna Terracini,et al.  Asymptotic estimates for the spatial segregation of competitive systems , 2005 .

[33]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[34]  C. Bishop Some Questions Concerning Harmonic Measure , 1992 .