Empirical Orthogonal Functions: The Medium is the Message

Empirical orthogonal function (EOF) analysis is a powerful tool for data compression and dimensionality reduction used broadly in meteorology and oceanography. Often in the literature, EOF modes are interpreted individually, independent of other modes. In fact, it can be shown that no such attribution can generally be made. This review demonstrates that in general individual EOF modes (i) will not correspond to individual dynamical modes, (ii) will not correspond to individual kinematic degrees of freedom, (iii) will not be statistically independent of other EOF modes, and (iv) will be strongly influenced by the nonlocal requirement that modes maximize variance over the entire domain. The goal of this review is not to argue against the use of EOF analysis in meteorology and oceanography; rather, it is to demonstrate the care that must be taken in the interpretation of individual modes in order to distinguish the medium from the message.

[1]  A. Yaglom Second-order Homogeneous Random Fields , 1961 .

[2]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[3]  M. Mcluhan Understanding Media: The Extensions of Man , 1964 .

[4]  G. Arfken Mathematical Methods for Physicists , 1967 .

[5]  Robert F. Cahalan,et al.  Sampling Errors in the Estimation of Empirical Orthogonal Functions , 1982 .

[6]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[7]  G. North Empirical Orthogonal Functions and Normal Modes , 1984 .

[8]  K. Vahala Handbook of stochastic methods for physics, chemistry and the natural sciences , 1986, IEEE Journal of Quantum Electronics.

[9]  M. Richman,et al.  Rotation of principal components , 1986 .

[10]  Michael Ghil,et al.  Statistics and Dynamics of Persistent Anomalies , 1987 .

[11]  K. Hasselmann PIPs and POPs: The reduction of complex dynamical systems using principal interaction and oscillation patterns , 1988 .

[12]  Leonard A. Smith,et al.  Investigating the origins and significance of low‐frequency modes of climate variability , 1994 .

[13]  Gilbert Brunet,et al.  Empirical normal-mode analysis of atmospheric data , 1994 .

[14]  Matthew Newman,et al.  A caveat concerning singular value decomposition , 1995 .

[15]  Steve Cherry,et al.  Singular Value Decomposition Analysis and Canonical Correlation Analysis , 1996 .

[16]  Brian F. Farrell,et al.  Generalized Stability Theory. Part II: Nonautonomous Operators , 1996 .

[17]  Robert Vautard,et al.  Empirical Normal Modes versus Empirical Orthogonal Functions for Statistical Prediction , 1996 .

[18]  Cécile Penland,et al.  A stochastic model of IndoPacific sea surface temperature anomalies , 1996 .

[19]  Frank M. Selten A Statistical Closure of a Low-Order Barotropic Model , 1997 .

[20]  D. Hartmann,et al.  Wave-Driven Zonal Flow Vacillation in the Southern Hemisphere , 1998 .

[21]  John M. Wallace,et al.  North atlantic oscillatiodannular mode: Two paradigms—one phenomenon , 2000 .

[22]  C. Deser On the teleconnectivity of the “Arctic Oscillation” , 2000 .

[23]  H. Storch,et al.  Statistical Analysis in Climate Research , 2000 .

[24]  David B. Stephenson,et al.  Arctic Oscillation or North Atlantic Oscillation , 2001 .

[25]  M. Latif,et al.  A Cautionary Note on the Interpretation of EOFs , 2002 .

[26]  A. Zadra,et al.  An Empirical Normal Mode Diagnostic Algorithm Applied to NCEP Reanalyses , 2002 .

[27]  Elizabeth C. Kent,et al.  Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century , 2003 .

[28]  Adam H. Monahan,et al.  The Vertical Structure of Wintertime Climate Regimes of the Northern Hemisphere Extratropical Atmosphere , 2003 .

[29]  Andrew J. Majda,et al.  Strategies for Model Reduction: Comparing Different Optimal Bases , 2004 .

[30]  Adam H. Monahan,et al.  The Spatial and Temporal Structure of ENSO Nonlinearity , 2004 .

[31]  Relation between Annular Modes and the Mean State: Southern Hemisphere Summer , 2005 .

[32]  Zonal Asymmetries, Teleconnections, and Annular Patterns in a GCM , 2005 .

[33]  J. Fyfe,et al.  NOTES AND CORRESPONDENCE Characterizing Midlatitude Jet Variability: Lessons from a Simple GCM , 2005 .

[34]  On the Nature of Zonal Jet EOFs , 2006 .

[35]  P. Kushner,et al.  Resolving the Regional Signature of the Annular Modes , 2007 .

[36]  Frank Kwasniok,et al.  Reduced Atmospheric Models Using Dynamically Motivated Basis Functions , 2007 .

[37]  D. Hartmann,et al.  Zonal Jet Structure and the Leading Mode of Variability , 2007 .

[38]  D. Dommenget Evaluating EOF modes against a stochastic null hypothesis , 2007 .

[39]  W. Briggs Statistical Methods in the Atmospheric Sciences , 2007 .

[40]  Ian T. Jolliffe,et al.  Empirical orthogonal functions and related techniques in atmospheric science: A review , 2007 .

[41]  G. Vallis,et al.  Local and hemispheric dynamics of the North Atlantic Oscillation, annular patterns and the zonal index , 2008 .

[42]  E. Tziperman,et al.  Optimal Surface Excitation of the Thermohaline Circulation , 2008 .

[43]  On Annular Modes and Zonal Jets , 2008 .

[44]  Illia Horenko,et al.  On Simultaneous Data-Based Dimension Reduction and Hidden Phase Identification , 2008 .

[45]  Richard Kleeman,et al.  Stochastic theories for the irregularity of ENSO , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[46]  How Generic Are Dipolar Jet EOFs , 2009 .

[47]  Ian T. Jolliffe,et al.  Spatial Weighting and Iterative Projection Methods for EOFs , 2009 .

[48]  Petros,et al.  Generalized Stability Theory . Part I : Autonomous Operators , 2022 .