Hydrogen Storage in High Surface Area Carbons with Identical Surface Areas but Different Pore Sizes: Direct Demonstration of the Effects of Pore Size

We present experimental data that directly shows the effect of pore size on hydrogen uptake in high surface area porous carbons. A direct study of the influence of pore size has been made possible by comparing the uptake capacity of porous carbons with identical surface areas but with different pore sizes and pore size distributions. A variety of synthesis methods have been used to prepare carbon materials with similar surface areas with pore sizes ranging from the micropore range (12 A) to supermicropore/lower mesopore (23 A) and lower mesopore (31 A) range. This allowed a simple and straightforward analysis of the influence of pore size without any changes in total surface area. The pore size essentially defines the hydrogen uptake with no apparent regard to the similar surface areas. The excess and total hydrogen uptake (at −196 °C and 20 bar) of carbons with identical surface areas of 3340 m2/g, increased from 3.7 and 5.4 wt % (31 A sample), to 4.8 and 6.3 wt % (23 A sample) and to 6.3 and 7.3 wt % fo...

[1]  A. Züttel,et al.  Complex hydrides for hydrogen storage. , 2007, Chemical reviews.

[2]  M. Sevilla,et al.  Enhancement of Hydrogen Storage Capacity of Zeolite-Templated Carbons by Chemical Activation , 2010 .

[3]  R. Mokaya,et al.  Synthesis and High Hydrogen Storage Capacity of Zeolite-Like Carbons Nanocast Using As-Synthesized Zeolite Templates , 2008 .

[4]  Yoshiyuki Hattori,et al.  INVESTIGATION OF HYDROGEN STORAGE CAPACITY OF VARIOUS CARBON MATERIALS , 2007 .

[5]  C. Müller,et al.  Clean hydrogen production and electricity from coal via chemical looping: Identifying a suitable operating regime , 2009 .

[6]  I. Cabria,et al.  The optimum average nanopore size for hydrogen storage in carbon nanoporous materials , 2007 .

[7]  R. Mokaya,et al.  Ordered Mesoporous Carbon Hollow Spheres Nanocast Using Mesoporous Silica via Chemical Vapor Deposition , 2004 .

[8]  R. Mokaya,et al.  A simplified synthesis of N-doped zeolite-templated carbons, the control of the level of zeolite-like ordering and its effect on hydrogen storage properties , 2011 .

[9]  Y. Gogotsi,et al.  Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage. , 2005, Journal of the American Chemical Society.

[10]  Michael Hirscher,et al.  Nanostructures with high surface area for hydrogen storage , 2005 .

[11]  Antonio B. Fuertes,et al.  Ultrahigh surface area polypyrrole-based carbons with superior performance for hydrogen storage , 2011 .

[12]  Hui-Ming Cheng,et al.  Hydrogen storage in carbon nanotubes , 2001 .

[13]  R. Mokaya,et al.  Hydrogen storage in high surface area carbons: experimental demonstration of the effects of nitrogen doping. , 2009, Journal of the American Chemical Society.

[14]  Omar M Yaghi,et al.  Hydrogen sorption in functionalized metal-organic frameworks. , 2004, Journal of the American Chemical Society.

[15]  D. Zhao,et al.  A Fast Way for Preparing Crack-free Mesostructured Silica Monolith , 2003 .

[16]  Dan Zhao,et al.  The current status of hydrogen storage in metal–organic frameworks , 2008 .

[17]  T. Kyotani,et al.  General Relationship between Hydrogen Adsorption Capacities at 77 and 298 K and Pore Characteristics of the Porous Adsorbents , 2012 .

[18]  R. Mokaya,et al.  Evolution of optimal porosity for improved hydrogen storage in templated zeolite-like carbons , 2010 .

[19]  Carl-Jochen Winter,et al.  Hydrogen energy — Abundant, efficient, clean: A debate over the energy-system-of-change☆ , 2009 .

[20]  R. Mokaya,et al.  Preparation and hydrogen storage properties of zeolite-templated carbon materials nanocast via chemical vapor deposition: effect of the zeolite template and nitrogen doping. , 2006, The journal of physical chemistry. B.

[21]  Xiang Lin,et al.  Exceptionally high H2 storage by a metal-organic polyhedral framework. , 2009, Chemical communications.

[22]  R. Mokaya,et al.  Characterisation and hydrogen storage of Pt-doped carbons templated by Pt-exchanged zeolite Y , 2011 .

[23]  Sang Soo Han,et al.  Recent advances on simulation and theory of hydrogen storage in metal-organic frameworks and covalent organic frameworks. , 2009, Chemical Society reviews.

[24]  Y. Gogotsi,et al.  Importance of pore size in high-pressure hydrogen storage by porous carbons , 2009 .

[25]  Qingyuan Hu,et al.  Hydrogen adsorption in mesoporous carbons , 2004 .

[26]  Y. Hu,et al.  Hydrogen Storage in Metal–Organic Frameworks , 2010, Advanced materials.

[27]  R. Mokaya,et al.  CVD Nanocasting Routes to Zeolite‐Templated Carbons for Hydrogen Storage , 2010 .

[28]  R. Mokaya,et al.  Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. , 2007, Journal of the American Chemical Society.

[29]  R. Mokaya,et al.  Synthesis of hollow spherical mesoporous N-doped carbon materials with graphitic framework , 2005 .

[30]  Robert C. Bowman,et al.  Hydrogen desorption and adsorption measurements on graphite nanofibers , 1998 .

[31]  Michael O'Keeffe,et al.  Hydrogen Storage in Microporous Metal-Organic Frameworks , 2003, Science.

[32]  R. Mokaya,et al.  Simultaneous Control of Morphology and Porosity in Nanoporous Carbon: Graphitic Mesoporous Carbon Nanorods and Nanotubules with Tunable Pore Size , 2006 .

[33]  J. Dentzer,et al.  Hydrogen storage in activated carbon materials: Role of the nanoporous texture , 2004 .

[34]  Jong‐San Chang,et al.  Low-temperature adsorption of hydrogen on nanoporous aluminophosphates: effect of pore size. , 2006, The journal of physical chemistry. B.

[35]  Richard Chahine,et al.  Hydrogen adsorption in carbon nanostructures , 2001 .

[36]  K. D. de Jong,et al.  Hydrogen storage using physisorption – materials demands , 2001 .

[37]  R. Mokaya,et al.  Generalized and Facile Synthesis Approach to N-Doped Highly Graphitic Mesoporous Carbon Materials , 2005 .

[38]  Andreas Züttel,et al.  Hydrogen storage in carbon nanostructures , 2002 .

[39]  R. Mokaya,et al.  Mesostructured Hollow Spheres of Graphitic N-Doped Carbon Nanocast from Spherical Mesoporous Silica , 2004 .

[40]  George Crabtree,et al.  The hydrogen economy , 2006, IEEE Engineering Management Review.

[41]  R. Mokaya,et al.  The effect of Al content of zeolite template on the properties and hydrogen storage capacity of zeolite templated carbons , 2011 .

[42]  P. Bénard,et al.  Storage of hydrogen by physisorption on carbon and nanostructured materials , 2007 .

[43]  Diego Cazorla-Amorós,et al.  Hydrogen Storage in Activated Carbons and Activated Carbon Fibers , 2002 .

[44]  Hong-Cai Zhou,et al.  Gas storage in porous metal-organic frameworks for clean energy applications. , 2010, Chemical communications.

[45]  R. Mokaya,et al.  Preparation and hydrogen storage capacity of templated and activated carbons nanocast from commercially available zeolitic imidazolate framework , 2012 .

[46]  R. Mokaya,et al.  Ordered Mesoporous Carbon Monoliths: CVD Nanocasting and Hydrogen Storage Properties , 2007 .

[47]  A. B. Fuertes,et al.  Preparation and hydrogen storage capacity of highly porous activated carbon materials derived from p , 2011 .

[48]  Haoshen Zhou,et al.  Ordered porous carbon with tailored pore size for electrochemical hydrogen storage application. , 2006, The journal of physical chemistry. B.

[49]  Michael J. Heben,et al.  Hydrogen storage using carbon adsorbents: past, present and future , 2001 .

[50]  F. Béguin,et al.  Electrochemical energy storage in ordered porous carbon materials , 2005 .

[51]  Cheng,et al.  Hydrogen storage in single-walled carbon nanotubes at room temperature , 1999, Science.

[52]  P. T. Moseley,et al.  Hydrogen storage by carbon materials , 2006 .

[53]  K. Thomas,et al.  Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials. , 2009, Dalton transactions.

[54]  K. Thomas,et al.  Hydrogen adsorption and storage on porous materials , 2007 .

[55]  Louis Schlapbach,et al.  Hydrogen as a Fuel and Its Storage for Mobility and Transport , 2002 .

[56]  Juan Hu,et al.  High hydrogen storage capacity of porous carbons prepared by using activated carbon. , 2009, Journal of the American Chemical Society.

[57]  E. Garrone,et al.  Role of microporosity in hydrogen adsorption on templated nanoporous carbons , 2008 .

[58]  A. B. Fuertes,et al.  High density hydrogen storage in superactivated carbons from hydrothermally carbonized renewable organic materials , 2011 .

[59]  R. Mokaya,et al.  Templated nanoscale porous carbons. , 2010, Nanoscale.

[60]  E. C. D. Lara,et al.  Adsorption and coadsorption of molecular hydrogen isotopes in zeolites. 1. Isotherms of H2, HD, and D2 in NaA by thermomicrogravimetry , 1998 .

[61]  C. Arean,et al.  Materials for hydrogen storage: current research trends and perspectives. , 2008, Chemical communications.

[62]  Jörg Fink,et al.  Hydrogen storage in different carbon nanostructures , 2002 .

[63]  Omar M Yaghi,et al.  Strategies for hydrogen storage in metal--organic frameworks. , 2005, Angewandte Chemie.

[64]  A. Fletcher,et al.  Hydrogen adsorption on functionalized nanoporous activated carbons. , 2005, The journal of physical chemistry. B.

[65]  M. Sevilla,et al.  Superactivated carbide-derived carbons with high hydrogen storage capacity , 2010 .

[66]  Turner,et al.  A realizable renewable energy future , 1999, Science.

[67]  M. Deluchi,et al.  Hydrogen vehicles: an evaluation of fuel storage, performance, safety, environmental impacts, and cost , 1989 .

[68]  A. Chambers,et al.  Hydrogen Storage in Graphite Nanofibers , 1998 .

[69]  Michael O'Keeffe,et al.  A route to high surface area, porosity and inclusion of large molecules in crystals , 2004, Nature.

[70]  K. Lillerud,et al.  Liquid hydrogen in protonic chabazite. , 2005, Journal of the American Chemical Society.

[71]  A. Züttel,et al.  Hydrogen-storage materials for mobile applications , 2001, Nature.

[72]  Chen,et al.  High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures , 1999, Science.

[73]  G. Yushin,et al.  Carbide‐Derived Carbons: Effect of Pore Size on Hydrogen Uptake and Heat of Adsorption , 2006 .

[74]  Peter Lamp,et al.  Physisorption of Hydrogen on Microporous Carbon and Carbon Nanotubes , 1998 .

[75]  Gary G. Tibbetts,et al.  Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers , 2001 .

[76]  Mircea Dincă,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[77]  Mauricio Terrones,et al.  Hydrogen storage in spherical nanoporous carbons , 2005 .