Computing generators of the tame kernel of a global function field
暂无分享,去创建一个
[1] R. Donnelly. Generators and Relations , 2018, Algebra.
[2] J. Tate. Relations between K2 and Galois cohomology , 1976 .
[3] A. Kuku,et al. Higher Algebraic K-Theory , 2006 .
[4] Joseph H. Silverman. The S -unit equation over function fields , 1984 .
[5] Florian Hess,et al. Computing Riemann-Roch Spaces in Algebraic Function Fields and Related Topics , 2002, J. Symb. Comput..
[6] B. Magurn. Symbols in Arithmetic , 2002 .
[7] Calvin C. Moore,et al. Group extensions ofp-adic and adelic linear groups , 1968 .
[8] J. Tate,et al. A reciprocity law forK2-traces , 1983 .
[9] A. Suslin. Torsion in K2 of fields , 1987 .
[10] H. Gangl,et al. Generators and relations for K_2 O_F. , 2004 .
[11] S. Lang,et al. Abelian varieties over finite fields , 2005 .
[12] H. Bass,et al. The Milnor ring of a global field , 1973 .
[13] M. Kolster. On torsion in K>2 of fields , 1991 .
[14] Richard P. Groenewegen,et al. Bounds for computing the tame kernel , 2003, Math. Comput..
[15] René Schoof,et al. Nonsingular plane cubic curves over finite fields , 1987, J. Comb. Theory A.
[16] R. C. Mason. The hyperelliptic equation over function fields , 1983, Mathematical Proceedings of the Cambridge Philosophical Society.
[17] Henning Stichtenoth,et al. Algebraic function fields and codes , 1993, Universitext.
[18] D. Quillen,et al. Higher algebraic K-theory: I , 1973 .