An unscented Rauch-Tung-Striebel smoother for SLAM problem
暂无分享,去创建一个
Kiyotaka Izumi | Keigo Watanabe | Shoichi Maeyama | Saifudin Razali | Keigo Watanabe | S. Maeyama | K. Izumi | S. Razali
[1] H. Rauch. Solutions to the linear smoothing problem , 1963 .
[2] Victor C. M. Leung,et al. Unscented Rauch--Tung--Striebel Smoother , 2008, IEEE Transactions on Automatic Control.
[3] Jeffrey K. Uhlmann,et al. Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.
[4] Yuanxin Wu,et al. Unscented Kalman filtering for additive noise case: augmented versus nonaugmented , 2005, IEEE Signal Processing Letters.
[5] Rudolph van der Merwe,et al. Sigma-point kalman filters for probabilistic inference in dynamic state-space models , 2004 .
[6] Timothy S. Bailey,et al. Mobile Robot Localisation and Mapping in Extensive Outdoor Environments , 2002 .
[7] Nando de Freitas,et al. Fast particle smoothing: if I had a million particles , 2006, ICML.
[8] Geir Evensen,et al. The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .
[9] Rudolph van der Merwe,et al. The Unscented Kalman Filter , 2002 .
[10] C. Striebel,et al. On the maximum likelihood estimates for linear dynamic systems , 1965 .
[11] S. Maeyama,et al. An unscented Rauch-Tung-Striebel smoother for a bearing only tracking problem , 2010, ICCAS 2010.
[12] Neil J. Gordon,et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..