Preparation and electrical properties of graphene nanosheet/Al2O3 composites

Fully dense graphene nanosheet(GNS)/Al2O3 composites with homogeneously distributed GNSs of thicknesses ranging from 2.5 to 20 nm have been fabricated from ball milled expanded graphite and Al2O3 by spark plasma sintering. The percolation threshold of electrical conductivity of the as-prepared GNS/Al2O3 composites is around 3 vol.%, and this new composite outperforms most of carbon nanotube/Al2O3 composites in electrical conductivity. The temperature dependence of electrical conductivity indicated that the as-prepared composites behaved as a semimetal in a temperature range from 2 to 300 K.

[1]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[2]  S. Kirkpatrick Percolation and Conduction , 1973 .

[3]  Y. Miyamoto,et al.  Mechanical properties of SiC composites incorporating SiC-coated multi-walled carbon nanotubes , 2007 .

[4]  S. Stankovich,et al.  Graphene-based composite materials , 2006, Nature.

[5]  J. L. Li,et al.  Carbon scrolls produced by high energy ball milling of graphite , 2005 .

[6]  Lianjun Wang,et al.  Microstructure and mechanical properties of in situ produced TiC/C nanocomposite by spark plasma sintering , 2005 .

[7]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[8]  T. Peijs,et al.  Dimethylformamide: an effective dispersant for making ceramic–carbon nanotube composites , 2008, Nanotechnology.

[9]  Werner J. Blau,et al.  Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films , 2002 .

[10]  Harvey Scher,et al.  Critical Density in Percolation Processes , 1970 .

[11]  Jun Yan,et al.  Preparation of graphene nanosheet/polymer composites using in situ reduction–extractive dispersion , 2009 .

[12]  D. Guérard,et al.  Ball-milling: the behavior of graphite as a function of the dispersal media , 2002 .

[13]  H. Dai,et al.  Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors , 2008, Science.

[14]  Ji Liang,et al.  Electronic transport properties of multiwall carbon nanotubes/yttria-stabilized zirconia composites , 2007 .

[15]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[16]  Junichi Tatami,et al.  Electrically Conductive CNT‐Dispersed Silicon Nitride Ceramics , 2005 .

[17]  Joshua D. Kuntz,et al.  Electrical properties of nanoceramics reinforced with ropes of single-walled carbon nanotubes , 2003 .

[18]  S. Guo,et al.  Electrical Properties of Silica‐Based Nanocomposites with Multiwall Carbon Nanotubes , 2007 .

[19]  L. Gao,et al.  Carbon nanotubes–metal nitride composites: a new class of nanocomposites with enhanced electrical properties , 2005 .

[20]  S. Stankovich,et al.  Graphene-silica composite thin films as transparent conductors. , 2007, Nano letters.

[21]  A. Boccaccini,et al.  Sol–gel route to carbon nanotube borosilicate glass composites , 2009 .

[22]  J. Coleman,et al.  High-yield production of graphene by liquid-phase exfoliation of graphite. , 2008, Nature nanotechnology.

[23]  E. Capria,et al.  Percolation of single-walled carbon nanotubes in ceramic matrix nanocomposites , 2004 .

[24]  Lianjun Wang,et al.  Transport properties of hot-pressed bulk carbon nanotubes compacted by spark plasma sintering , 2009 .

[25]  A. Montone,et al.  Low energy pure shear milling: A method for the preparation of graphite nano-sheets , 2006 .

[26]  Bing-Lin Gu,et al.  Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping. , 2007, Nano letters.

[27]  Ping Sheng,et al.  Fluctuation-induced tunneling conduction in disordered materials , 1980 .

[28]  D. Stauffer Scaling Theory of Percolation Clusters , 1979, Complex Media and Percolation Theory.

[29]  Wei Pan,et al.  Electrical conductivity and dielectric properties of multiwalled carbon nanotube and alumina composites , 2006 .