Mapping the results of local statistics: Using geographically weighted regression.

The application of geographically weighted regression (GWR) - a local spatial statistical technique used to test for spatial nonstationarity - has grown rapidly in the social, health and demographic sciences. GWR is a useful exploratory analytical tool that generates a set of location-specific parameter estimates which can be mapped and analysed to provide information on spatial nonstationarity in relationships between predictors and the outcome variable. A major challenge to GWR users, however, is how best to map these parameter estimates. This paper introduces a simple mapping technique that combines local parameter estimates and local t-values on one map. The resultant map can facilitate the exploration and interpretation of nonstationarity.

[1]  Steven Farber,et al.  Moving Window Approaches for Hedonic Price Estimation: An Empirical Comparison of Modelling Techniques , 2008 .

[2]  A. Stewart Fotheringham,et al.  Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity , 2010 .

[3]  Michael F. Goodchild,et al.  Spatially integrated social science , 2004 .

[4]  A. Páez,et al.  Geographically Weighted Regression , 2021, Handbook of Regional Science.

[5]  S. G. Kim,et al.  Extreme Coefficients in Geographically Weighted Regression and Their Effects on Mapping , 2009 .

[6]  Judy M. Olson,et al.  SPECTRALLY ENCODED TWO-VARIABLE MAPS∗ , 1981 .

[7]  Richard Dunn,et al.  A Dynamic Approach to Two-Variable Color Mapping , 1989 .

[8]  Martin Charlton,et al.  Two techniques for exploring non-stationarity in geographical data , 1997 .

[9]  Tse-Chuan Yang,et al.  SAS macro programs for geographically weighted generalized linear modeling with spatial point data: Applications to health research , 2012, Comput. Methods Programs Biomed..

[10]  Danlin Yu,et al.  Spatially varying development mechanisms in the Greater Beijing Area: a geographically weighted regression investigation , 2006 .

[11]  ESRIジャパン株式会社 ArcGIS Desktop逆引きガイド : バージョン10対応 , 2011 .

[12]  S. Fotheringham,et al.  Geographically Weighted Regression , 1998 .

[13]  David C. Wheeler,et al.  Simultaneous Coefficient Penalization and Model Selection in Geographically Weighted Regression: The Geographically Weighted Lasso , 2009 .

[14]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[15]  Cynthia A. Brewer,et al.  Guidelines for Selecting Colors for Diverging Schemes on Maps , 1996 .

[16]  F. Zhao,et al.  Using Geographically Weighted Regression Models to Estimate Annual Average Daily Traffic , 2004 .

[17]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[18]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[19]  John Paul Jones,et al.  Contingency, Realism, and the Expansion Method , 2010 .

[20]  Cynthia A. Brewer,et al.  Color Use Guidelines for Mapping and Visualization , 1994 .

[21]  Chris Brunsdon,et al.  Geographically Weighted Regression: The Analysis of Spatially Varying Relationships , 2002 .

[22]  D. Wheeler Diagnostic Tools and a Remedial Method for Collinearity in Geographically Weighted Regression , 2007 .

[23]  David Wheeler,et al.  Multicollinearity and correlation among local regression coefficients in geographically weighted regression , 2005, J. Geogr. Syst..

[24]  M. Charlton,et al.  Geographically Weighted Regression: A Natural Evolution of the Expansion Method for Spatial Data Analysis , 1998 .

[25]  S. Fotheringham,et al.  Geographically weighted regression : modelling spatial non-stationarity , 1998 .

[26]  C. Lloyd Local Models for Spatial Analysis , 2006 .

[27]  Liviu Theodor Ene,et al.  Modelling tree diameter from airborne laser scanning derived variables: A comparison of spatial statistical models , 2010 .

[28]  A S Fotheringham,et al.  Geographically weighted Poisson regression for disease association mapping , 2005, Statistics in medicine.

[29]  Christopher D. Lloyd,et al.  Local Models for Spatial Analysis, Second Edition , 2010 .

[30]  Steven Farber,et al.  A Simulation-Based Study of Geographically Weighted Regression as a Method for Investigating Spatially Varying Relationships , 2011 .

[31]  L. Jordan Religion and demography in the United States : a geographic analysis , 2006 .

[32]  Bin Jiang,et al.  Geospatial analysis and modelling of urban structure and dynamics , 2010 .

[33]  H. Akaike A new look at the statistical model identification , 1974 .

[34]  Ian N. Gregory,et al.  Analyzing Spatiotemporal Change by Use of National Historical Geographical Information Systems: Population Change during and after the Great Irish Famine , 2005 .

[35]  J. Mennis Mapping the Results of Geographically Weighted Regression , 2006 .

[36]  Danlin Yu,et al.  Modeling Spatial Dimensions of Housing Prices in Milwaukee, WI , 2007 .

[37]  A. Hope A Simplified Monte Carlo Significance Test Procedure , 1968 .

[38]  Tse-Chuan Yang,et al.  What has geography got to do with it? Using GWR to explore place-specific associations with prenatal care utilization , 2012, GeoJournal.

[39]  Martin Charlton,et al.  Multiple Dependent Hypothesis Tests inGeographically Weighted Regression , 2009 .

[40]  Yee Leung,et al.  Analysing regional industrialisation in Jiangsu province using geographically weighted regression , 2002, J. Geogr. Syst..

[41]  G. Foody Geographical weighting as a further refinement to regression modelling: An example focused on the NDVI–rainfall relationship , 2003 .

[42]  P. Longley,et al.  Spatial Dependence and Heterogeneity in Patterns of Hardship: An Intra-Urban Analysis , 2004 .

[43]  Noel A. C. Cressie,et al.  Statistics for Spatial Data: Cressie/Statistics , 1993 .

[44]  Jordan Chamberlin,et al.  An investigation of the spatial determinants of the local prevalence of poverty in rural Malawi , 2005 .

[45]  Kamar Ali,et al.  Can Geographically Weighted Regressions Improve Regional Analysis and Policy Making? , 2007 .

[46]  P. Goovaerts Space-time visualization and detection of health disparities using geostatistics and a space-Time information system: The case of prostate and cervix cancer mortality in the United States, 1970-1994 , 2007 .

[47]  Vivian Yi-Ju Chen,et al.  Cold surge: a sudden and spatially varying threat to health? , 2009, The Science of the total environment.

[48]  Martin Charlton,et al.  Spatial Nonstationarity and Autoregressive Models , 1998 .

[49]  J. Mennis,et al.  The Distribution of Environmental Equity: Exploring Spatial Nonstationarity in Multivariate Models of Air Toxic Releases , 2005 .

[50]  Vivian Yi-Ju Chen,et al.  Examining non-stationary effects of social determinants on cardiovascular mortality after cold surges in Taiwan. , 2010, The Science of the total environment.

[51]  C. Gotway,et al.  Using Geostatistical Methods in the Analysis of Public Health Data: The Final Frontier? , 2010 .

[52]  ANALYSIS AND DETECTION OF HEALTH DISPARITIES USING GEOSTATISTICS AND A SPACE-TIME INFORMATION SYSTEM , 2005 .

[53]  B. Marx The Visual Display of Quantitative Information , 1985 .

[54]  Ernesto Calvo,et al.  The Local Voter: A Geographically Weighted Approach to Ecological Inference , 2003 .

[55]  David C. Wheeler Visualizing and Diagnosing Coefficients from Geographically Weighted Regression Models , 2010 .

[56]  M. Partridge,et al.  PERSISTENT POCKETS OF EXTREME AMERICAN POVERTY: PEOPLE OR PLACE BASED? , 2005 .

[57]  J. Eyton,et al.  Complementary‐Color, Two‐Variable Maps , 1984 .

[58]  Stephen A Matthews,et al.  Geographically Weighted Quantile Regression (GWQR): An Application to U.S. Mortality Data. , 2012, Geographical analysis.

[59]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[60]  Murali Haran,et al.  The Impacts of Social Capital on Infant Mortality in the U.S.: A Spatial Investigation , 2009 .