A New Trigonometrically Fitted Two-Derivative Runge-Kutta Method for the Numerical Solution of the Schrödinger Equation and Related Problems

A new trigonometrically fitted fifth-order two-derivative Runge-Kutta method with variable nodes is developed for the numerical solution of the radial Schrodinger equation and related oscillatory problems. Linear stability and phase properties of the new method are examined. Numerical results are reported to show the robustness and competence of the new method compared with some highly efficient methods in the recent literature.

[1]  G. Vanden Berghe,et al.  Exponentially-fitted Obrechkoff methods for second-order differential equations , 2006 .

[2]  T. E. Simos A family of fifth algebraic order trigonometrically fitted Runge–Kutta methods for the numerical solution of the Schrödinger equation , 2005 .

[3]  Higinio Ramos,et al.  On the frequency choice in trigonometrically fitted methods , 2010, Appl. Math. Lett..

[4]  Yonghui Zhang,et al.  Trigonometrically-fitted Scheifele two-step methods for perturbed oscillators , 2011, Comput. Phys. Commun..

[5]  Zacharias A. Anastassi,et al.  Trigonometrically fitted Runge–Kutta methods for the numerical solution of the Schrödinger equation , 2005 .

[6]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[7]  J. M. Franco,et al.  High-order P-stable multistep methods , 1990 .

[8]  Tom E. Simos,et al.  A Modified Phase-Fitted Runge–Kutta Method for the Numerical Solution of the Schrödinger Equation , 2001 .

[9]  Antonio Giorgilli,et al.  On the problem of energy equipartition for large systems of the Fermi-Pasta-Ulam type: analytical and numerical estimates , 1992 .

[10]  Hans Van de Vyver,et al.  Stability and phase-lag analysis of explicit Runge-Kutta methods with variable coefficients for oscillatory problems , 2005, Comput. Phys. Commun..

[11]  M. Rizea,et al.  A numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies , 1980 .

[12]  Theodore E. Simos,et al.  A Modified Runge-Kutta Method with Phase-lag of Order Infinity for the Numerical Solution of the Schrödinger Equation and Related Problems , 2001, Comput. Chem..

[13]  Theodore E. Simos,et al.  Computation of the eigenvalues of the Schrödinger equation by exponentially-fitted Runge-Kutta-Nyström methods , 2009, Comput. Phys. Commun..

[14]  T. E. Simos,et al.  An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions , 1998 .

[15]  Hans Van de Vyver,et al.  An embedded phase-fitted modified Runge–Kutta method for the numerical integration of the radial Schrödinger equation , 2006 .

[16]  Robert P. K. Chan,et al.  On explicit two-derivative Runge-Kutta methods , 2010, Numerical Algorithms.

[17]  H. De Meyer,et al.  Exponentially fitted Runge-Kutta methods , 2000 .

[18]  Tom Lyche,et al.  Chebyshevian multistep methods for ordinary differential equations , 1972 .

[19]  José-Miguel Farto,et al.  An algorithm for the systematic construction of solutions to perturbed problems , 1998 .

[20]  W. Gautschi Numerical integration of ordinary differential equations based on trigonometric polynomials , 1961 .

[21]  J. M. Franco Runge-Kutta methods adapted to the numerical integration of oscillatory problems , 2004 .

[22]  Ben P. Sommeijer,et al.  Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions , 1987 .

[23]  Theodore E. Simos,et al.  A fifth algebraic order trigonometrically-fitted modified runge-kutta zonneveld method for the numerical solution of orbital problems , 2005, Math. Comput. Model..

[24]  H. De Meyer,et al.  Frequency determination and step-length control for exponentially-fitted Runge---Kutta methods , 2001 .

[25]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[26]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[27]  Higinio Ramos,et al.  Dissipative Chebyshev exponential-fitted methods for numerical solution of second-order differential equations , 2003 .

[28]  Theodore E. Simos,et al.  An optimized explicit Runge-Kutta-Nyström method for the numerical solution of orbital and related periodical initial value problems , 2012, Comput. Phys. Commun..

[29]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[30]  Theodore E. Simos,et al.  Construction of an optimized explicit Runge-Kutta-Nyström method for the numerical solution of oscillatory initial value problems , 2011, Comput. Math. Appl..

[31]  Mei Zhang,et al.  A New Family of Phase-Fitted and Amplification-Fitted Runge-Kutta Type Methods for Oscillators , 2012, J. Appl. Math..

[32]  Hans Van de Vyver,et al.  An embedded exponentially fitted Runge Kutta Nyström method for the numerical solution of orbital problems , 2006 .

[33]  J. M. Franco A class of explicit two-step hybrid methods for second-order IVPs , 2006 .

[34]  Tom E. Simos,et al.  AN EMBEDDED RUNGE–KUTTA METHOD WITH PHASE-LAG OF ORDER INFINITY FOR THE NUMERICAL SOLUTION OF THE SCHRÖDINGER EQUATION , 2000 .