Precision radial velocities with inexpensive compact spectrographs

High-precision astronomical spectrographs routinely employed to detect planets via the radial velocity method are generally large and expensive instruments. We present our progress developing a compact spectrograph using commercial ‘off-the-shelf’ components that can achieve similar precision at a fraction of the cost. The spectrograph, PIMMS Visible, has a resolving power of R-50,000 operating in the visible regime. We are able to obtain RMS velocity precisions of better than ~1 m/s by calibrating with a stabilised single-mode etalon. As a technology proof we attempt to detect the solar 5- minute period p-mode oscillations (a few m/s signal).

[1]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[2]  Nick Cvetojevic,et al.  PIMMS: photonic integrated multimode microspectrograph , 2010, Astronomical Telescopes + Instrumentation.

[3]  Jessica R. Zheng,et al.  GNOSIS: THE FIRST INSTRUMENT TO USE FIBER BRAGG GRATINGS FOR OH SUPPRESSION , 2012, 1212.1201.

[4]  David F. Gray,et al.  Precise Spectroscopic Radial Velocity Measurements Using Telluric Lines , 2006 .

[5]  N. Jovanovic,et al.  First starlight spectrum captured using an integrated photonic micro-spectrograph , 2012, 1208.4418.

[6]  Sergio G Leon-Saval,et al.  Beating the classical limit: a diffraction-limited spectrograph for an arbitrary input beam. , 2013, Optics express.

[7]  Joss Bland-Hawthorn,et al.  Low cost photonic comb for sub-m/s wavelength calibration , 2016, Astronomical Telescopes + Instrumentation.

[8]  A. Reiners,et al.  A laser-lock concept to reach cm s 1 -precision in Doppler experiments with Fabry-Pérot wavelength calibrators , 2014, 1408.6111.

[9]  Antonio Manescau,et al.  A spectrograph for exoplanet observations calibrated at the centimetre-per-second level , 2012, Nature.

[10]  J. Cruz,et al.  "Photonic lantern" spectral filters in multi-core Fiber. , 2012, Optics express.

[11]  Joss Bland-Hawthorn,et al.  The Photonic TIGER: a multicore fiber-fed spectrograph , 2012, Other Conferences.

[12]  Manuel Guizar-Sicairos,et al.  Efficient subpixel image registration algorithms. , 2008, Optics letters.

[13]  R. Davies,et al.  The SAURON project – I. The panoramic integral-field spectrograph , 2001, astro-ph/0103451.

[14]  R. Holzwarth,et al.  High‐precision wavelength calibration of astronomical spectrographs with laser frequency combs , 2007, astro-ph/0703622.

[15]  Nemanja Jovanovic,et al.  Progress and challenges with the Dragonfly instrument; an integratedphotonic pupil-remapping interferometer , 2012, Other Conferences.

[16]  Roland Ryf,et al.  Geometric requirements for photonic lanterns in space division multiplexing. , 2012, Optics express.

[17]  F. Pepe,et al.  A new list of thorium and argon spectral lines in the visible , 2007 .

[18]  F. Pepe,et al.  Evaluating the stability of atmospheric lines with HARPS , 2010, 1003.0541.

[19]  T A Birks,et al.  Ultrafast laser inscription of a 121-waveguide fan-out for astrophotonics. , 2012, Optics letters.

[20]  E. Pecontal,et al.  3D spectrography at high spatial resolution. I. Concept and realization of the integral field spectrograph TIGER. , 1995 .

[21]  T. A. Birks,et al.  Multicore optical fibres for astrophotonics , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).