Online Submodular Welfare Maximization: Greedy Beats 1/2 in Random Order

In the Submodular Welfare Maximization (SWM) problem, the input consists of a set of n items, each of which must be allocated to one of m agents. Each agent l has a valuation function vl, where vl(S) denotes the welfare obtained by this agent if she receives the set of items S. The functions vl are all submodular; as is standard, we assume that they are monotone and vl(∅) = 0. The goal is to partition the items into m disjoint subsets S1, S2, ... Sm in order to maximize the social welfare, defined as ∑l = 1m vl(Sl). A simple greedy algorithm gives a 1/2-approximation to SWM in the offline setting, and this was the best known until Vondrak's recent (1-1/e)-approximation algorithm [34]. In this paper, we consider the online version of SWM. Here, items arrive one at a time in an online manner; when an item arrives, the algorithm must make an irrevocable decision about which agent to assign it to before seeing any subsequent items. This problem is motivated by applications to Internet advertising, where user ad impressions must be allocated to advertisers whose value is a submodular function of the set of users / impressions they receive. There are two natural models that differ in the order in which items arrive. In the fully adversarial setting, an adversary can construct an arbitrary / worst-case instance, as well as pick the order in which items arrive in order to minimize the algorithm's performance. In this setting, the 1/2-competitive greedy algorithm is the best possible. To improve on this, one must weaken the adversary slightly: In the random order model, the adversary can construct a worst-case set of items and valuations, but does not control the order in which the items arrive; instead, they are assumed to arrive in a random order. The random order model has been well studied for online SWM and various special cases, but the best known competitive ratio (even for several special cases) is 1/2 + 1/n [9,10], barely better than the ratio for the adversarial order. Obtaining a competitive ratio of 1/2 + Ω(1) for the random order model has been an important open problem for several years. We solve this open problem by demonstrating that the greedy algorithm has a competitive ratio of at least 0.505 for online SWM in the random order model. This is the first result showing a competitive ratio bounded above 1/2 in the random order model, even for special cases such as the weighted matching or budgeted allocation problems (without the so-called 'large capacity' assumptions). For special cases of submodular functions including weighted matching, weighted coverage functions and a broader class of "second-order supermodular" functions, we provide a different analysis that gives a competitive ratio of 0.51. We analyze the greedy algorithm using a factor-revealing linear program, bounding how the assignment of one item can decrease potential welfare from assigning future items. We also formulate a natural conjecture which, if true, would improve the competitive ratio of the greedy algorithm to at least 0.567. In addition to our new competitive ratios for online SWM, we make two further contributions: First, we define the classes of second-order modular, supermodular, and submodular functions, which are likely to be of independent interest in submodular optimization. Second, we obtain an improved competitive ratio via a technique we refer to as gain linearizing, which may be useful in other contexts (see [26]): Essentially, we linearize the submodular function by dividing the gain of an optimal solution into gain from individual elements, compare the gain when it assigns an element to the optimal solution's gain from the element, and, crucially, bound the extent to which assigning elements can affect the potential gain of other elements.

[1]  Noam Nisan,et al.  Approximation Algorithms for Combinatorial Auctions with Complement-Free Bidders , 2009 .

[2]  Aranyak Mehta,et al.  Online Stochastic Matching: Beating 1-1/e , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[3]  Daniel Lehmann,et al.  Combinatorial auctions with decreasing marginal utilities , 2001, EC '01.

[4]  Richard M. Karp,et al.  An optimal algorithm for on-line bipartite matching , 1990, STOC '90.

[5]  Mohammad Taghi Hajiaghayi,et al.  Online prophet-inequality matching with applications to ad allocation , 2012, EC '12.

[6]  Nikhil R. Devanur,et al.  Near optimal online algorithms and fast approximation algorithms for resource allocation problems , 2011, EC '11.

[7]  Morteza Zadimoghaddam,et al.  Online Stochastic Weighted Matching: Improved Approximation Algorithms , 2011, WINE.

[8]  Vahab S. Mirrokni,et al.  Tight information-theoretic lower bounds for welfare maximization in combinatorial auctions , 2008, EC '08.

[9]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[10]  SaberiAmin,et al.  AdWords and generalized online matching , 2007 .

[11]  Morteza Zadimoghaddam,et al.  Simultaneous approximations for adversarial and stochastic online budgeted allocation , 2012, SODA.

[12]  Joseph Naor,et al.  Online Primal-Dual Algorithms for Maximizing Ad-Auctions Revenue , 2007, ESA.

[13]  HuangZhiyi,et al.  Whole-Page Optimization and Submodular Welfare Maximization with Online Bidders , 2016 .

[14]  Éva Tardos,et al.  Bayesian sequential auctions , 2012, EC '12.

[15]  Éva Tardos,et al.  Composable and efficient mechanisms , 2012, STOC '13.

[16]  Vahab S. Mirrokni,et al.  Maximizing Non-Monotone Submodular Functions , 2011, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[17]  Daniel Lehmann,et al.  Combinatorial auctions with decreasing marginal utilities , 2001, EC '01.

[18]  Nikhil R. Devanur,et al.  Whole-page optimization and submodular welfare maximization with online bidders , 2013, EC '13.

[19]  Jan Vondrák,et al.  Optimal approximation for the submodular welfare problem in the value oracle model , 2008, STOC.

[20]  R. Ravi,et al.  The Geometry of Online Packing Linear Programs , 2012, Math. Oper. Res..

[21]  Amin Saberi,et al.  Online stochastic matching: online actions based on offline statistics , 2010, SODA '11.

[22]  Mohammad Mahdian,et al.  Online bipartite matching with random arrivals: an approach based on strongly factor-revealing LPs , 2011, STOC '11.

[23]  Bala Kalyanasundaram,et al.  An optimal deterministic algorithm for online b-matching , 1996, Theor. Comput. Sci..

[24]  Aranyak Mehta,et al.  Online budgeted matching in random input models with applications to Adwords , 2008, SODA '08.

[25]  Renato Paes Leme,et al.  Sequential auctions and externalities , 2011, SODA.

[26]  Jan Vondrák,et al.  Online Submodular Welfare Maximization: Greedy is Optimal , 2012, SODA.

[27]  Gagan Goel,et al.  Online Vertex-Weighted Bipartite Matching and Single-bid Budgeted Allocations , 2010, SODA.

[28]  R. Ravi,et al.  Geometry of Online Packing Linear Programs , 2012, ICALP.

[29]  Sergei Vassilvitskii,et al.  Optimal online assignment with forecasts , 2010, EC '10.

[30]  Nikhil R. Devanur,et al.  Asymptotically optimal algorithm for stochastic adwords , 2012, EC '12.

[31]  Jon Feldman,et al.  Online Ad Assignment with Free Disposal , 2009, WINE.

[32]  Thomas P. Hayes,et al.  The adwords problem: online keyword matching with budgeted bidders under random permutations , 2009, EC '09.

[33]  Noam Nisan,et al.  Approximation algorithms for combinatorial auctions with complement-free bidders , 2005, STOC '05.

[34]  Morteza Zadimoghaddam,et al.  Randomized Composable Core-sets for Distributed Submodular Maximization , 2015, STOC.

[35]  Jon Feldman,et al.  Online Stochastic Packing Applied to Display Ad Allocation , 2010, ESA.

[36]  Berthold Vöcking,et al.  Primal beats dual on online packing LPs in the random-order model , 2013, STOC.

[37]  Zizhuo Wang,et al.  A Dynamic Near-Optimal Algorithm for Online Linear Programming , 2009, Oper. Res..

[38]  Aranyak Mehta,et al.  Online bipartite matching with unknown distributions , 2011, STOC '11.

[39]  Shahar Dobzinski,et al.  An improved approximation algorithm for combinatorial auctions with submodular bidders , 2006, SODA '06.