Detecting patterns of accessory genome coevolution in Staphylococcus aureus using data from thousands of genomes

[1]  P. François,et al.  Co-Carriage of Metal and Antibiotic Resistance Genes in Sewage Associated Staphylococci , 2021, Genes.

[2]  J. McInerney,et al.  Gene-gene relationships in an Escherichia coli accessory genome are linked to function and mobility , 2021, bioRxiv.

[3]  E. Snitkin,et al.  Hogwash: three methods for genome-wide association studies in bacteria , 2020, bioRxiv.

[4]  B. Shapiro,et al.  Benchmarking bacterial genome-wide association study methods using simulated genomes and phenotypes , 2020, Microbial genomics.

[5]  Christopher Beaudoin,et al.  Producing polished prokaryotic pangenomes with the Panaroo pipeline , 2020, Genome Biology.

[6]  J. McInerney,et al.  Coinfinder: detecting significant associations and dissociations in pangenomes , 2019, bioRxiv.

[7]  Xavier Didelot,et al.  Automated reconstruction of all gene histories in large bacterial pangenome datasets and search for co-evolved gene modules with Pantagruel , 2019, bioRxiv.

[8]  J. Corander,et al.  Genome-wide epistasis and co-selection study using mutual information , 2019, bioRxiv.

[9]  Hong Gu,et al.  Phylogenetic Clustering of Genes Reveals Shared Evolutionary Trajectories and Putative Gene Functions , 2018, Genome biology and evolution.

[10]  Robert A Petit,et al.  Staphylococcus aureus viewed from the perspective of 40,000+ genomes , 2018, PeerJ.

[11]  Jukka Corander,et al.  pyseer: a comprehensive tool for microbial pangenome-wide association studies , 2018, bioRxiv.

[12]  Jukka Corander,et al.  SuperDCA for genome-wide epistasis analysis , 2017, bioRxiv.

[13]  Xavier Didelot,et al.  A phylogenetic method to perform genome-wide association studies in microbes that accounts for population structure and recombination , 2017, bioRxiv.

[14]  M. Gutmann,et al.  Weak Epistasis May Drive Adaptation in Recombining Bacteria , 2017, Genetics.

[15]  Jacqueline A. Keane,et al.  ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads , 2017, bioRxiv.

[16]  Lonneke Scheffer,et al.  Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary , 2016, Genome Biology.

[17]  Tulio de Oliveira,et al.  Microbial genome-wide association studies: lessons from human GWAS , 2016, Nature Reviews Genetics.

[18]  D. Pillay,et al.  Genome-Wide Association Study of HIV Whole Genome Sequences Validated using Drug Resistance , 2016, bioRxiv.

[19]  Jukka Corander,et al.  Sequence element enrichment analysis to determine the genetic basis of bacterial phenotypes , 2016, Nature Communications.

[20]  Brian D. Ondov,et al.  Mash: fast genome and metagenome distance estimation using MinHash , 2015, Genome Biology.

[21]  David A. Clifton,et al.  Identifying lineage effects when controlling for population structure improves power in bacterial association studies , 2015, Nature Microbiology.

[22]  Peter E. Chen,et al.  The advent of genome-wide association studies for bacteria , 2015, bioRxiv.

[23]  T. Read,et al.  Characterizing the genetic basis of bacterial phenotypes using genome-wide association studies: a new direction for bacteriology , 2014, Genome Medicine.

[24]  W. Hanage,et al.  Comprehensive Identification of Single Nucleotide Polymorphisms Associated with Beta-lactam Resistance within Pneumococcal Mosaic Genes , 2014, PLoS genetics.

[25]  Daniel J. Wilson,et al.  Predicting the virulence of MRSA from its genome sequence , 2014, Genome research.

[26]  Barry G. Hall,et al.  SNP-Associations and Phenotype Predictions from Hundreds of Microbial Genomes without Genome Alignments , 2014, PloS one.

[27]  Peggy Hall,et al.  The NHGRI GWAS Catalog, a curated resource of SNP-trait associations , 2013, Nucleic Acids Res..

[28]  T. Mackay Epistasis and quantitative traits: using model organisms to study gene–gene interactions , 2013, Nature Reviews Genetics.

[29]  Razvan Sultana,et al.  Genomic Analysis Identifies Targets of Convergent Positive Selection in Drug Resistant Mycobacterium tuberculosis , 2013, Nature Genetics.

[30]  Keith A. Jolley,et al.  Genome-wide association study identifies vitamin B5 biosynthesis as a host specificity factor in Campylobacter , 2013, Proceedings of the National Academy of Sciences.

[31]  Tal Pupko,et al.  CoPAP: Coevolution of Presence–Absence Patterns , 2013, Nucleic Acids Res..

[32]  Tal Pupko,et al.  Uncovering the co-evolutionary network among prokaryotic genes , 2012, Bioinform..

[33]  J. Lindsay,et al.  The distribution of plasmids that carry virulence and resistance genes in Staphylococcus aureus is lineage associated , 2012, BMC Microbiology.

[34]  Andy Purvis,et al.  Selectivity in Mammalian Extinction Risk and Threat Types: a New Measure of Phylogenetic Signal Strength in Binary Traits , 2010, Conservation biology : the journal of the Society for Conservation Biology.

[35]  Torsten Seemann,et al.  Prokka: rapid prokaryotic genome annotation , 2014, Bioinform..

[36]  P. Phillips Epistasis — the essential role of gene interactions in the structure and evolution of genetic systems , 2008, Nature Reviews Genetics.

[37]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[38]  J. Ott,et al.  Complement Factor H Polymorphism in Age-Related Macular Degeneration , 2005, Science.

[39]  P. Donnelly,et al.  Case-control studies of association in structured or admixed populations. , 2001, Theoretical population biology.

[40]  W. Maddison,et al.  Testing character correlation using pairwise comparisons on a phylogeny. , 2000, Journal of theoretical biology.

[41]  M. Pagel Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.