Exploration and Development of High Entropy Alloys for Structural Applications

We develop a strategy to design and evaluate high-entropy alloys (HEAs) for structural use in the transportation and energy industries. We give HEA goal properties for low (≤150 °C), medium (≤450 °C) and high (≥1,100 °C) use temperatures. A systematic design approach uses palettes of elements chosen to meet target properties of each HEA family and gives methods to build HEAs from these palettes. We show that intermetallic phases are consistent with HEA definitions, and the strategy developed here includes both single-phase, solid solution HEAs and HEAs with intentional addition of a 2nd phase for particulate hardening. A thermodynamic estimate of the effectiveness of configurational entropy to suppress or delay compound formation is given. A 3-stage approach is given to systematically screen and evaluate a vast number of HEAs by integrating high-throughput computations and experiments. CALPHAD methods are used to predict phase equilibria, and high-throughput experiments on materials libraries with controlled composition and microstructure gradients are suggested. Much of this evaluation can be done now, but key components (materials libraries with microstructure gradients and high-throughput tensile testing) are currently missing. Suggestions for future HEA efforts are given.

[1]  C. Li,et al.  Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys , 2009 .

[2]  Oleg N. Senkov,et al.  Low-Density, Refractory Multi-Principal Element Alloys of the Cr-Nb-Ti-V-Zr System: Microstructure and Phase Analysis (Postprint) , 2013 .

[3]  R. Hultgren,et al.  Selected Values of Thermodynamic Properties of Metals and Alloys , 1963 .

[4]  Akira Takeuchi,et al.  Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element , 2005 .

[5]  Michael D. Uchic,et al.  A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing , 2005 .

[6]  B. Li,et al.  Microstructure and compressive properties of AlCrFeCoNi high entropy alloy , 2008 .

[7]  R. Millikan,et al.  Modern Physics , 1926, Nature.

[8]  D. Dimiduk,et al.  Dislocation structures and their relationship to strength in deformed nickel microcrystals , 2008 .

[9]  S. Fries,et al.  Compilation of `CALPHAD' formation enthalpy data: Binary intermetallic compounds in the COST 507 Gibbsian database , 1998 .

[10]  J. Yeh,et al.  Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi , 2009 .

[11]  Jien-Wei Yeh,et al.  Criterion for Sigma Phase Formation in Cr- and V-Containing High-Entropy Alloys , 2013 .

[12]  Jing Shi,et al.  Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys , 2009 .

[13]  A. Ludwig,et al.  Development of multifunctional thin films using high-throughput experimentation methods , 2008 .

[14]  Yong Zhang,et al.  Prediction of high-entropy stabilized solid-solution in multi-component alloys , 2012 .

[15]  G. Eggeler,et al.  The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy , 2013 .

[16]  Dierk Raabe,et al.  Rapid alloy prototyping: Compositional and thermo-mechanical high throughput bulk combinatorial desi , 2012 .

[17]  Zushu Hu,et al.  Synthesis and properties of multiprincipal component AlCoCrFeNiSix alloys , 2010 .

[18]  William N. Sharpe,et al.  Microscale Characterization of Mechanical Properties , 2007 .

[19]  P. Liaw,et al.  Refractory high-entropy alloys , 2010 .

[20]  D. V. Louzguine-Luzgin,et al.  An assessment of binary metallic glasses: correlations between structure, glass forming ability and stability , 2010 .

[21]  J. Groves Directed vapor deposition , 1998 .

[22]  W. A. Oates,et al.  Application of the cluster/site approximation to the calculation of multicomponent alloy phase diagrams , 2005 .

[23]  Chuan Zhang,et al.  Computational Thermodynamics Aided High-Entropy Alloy Design , 2012, JOM.

[24]  H. Bei,et al.  Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys , 2013 .

[25]  Yong Zhang,et al.  Microstructure and compressive properties of multicomponent Alx(TiVCrMnFeCoNiCu)100−x high-entropy alloys , 2007 .

[26]  J. Yeh Recent progress in high-entropy alloys , 2006 .

[27]  J. Yeh,et al.  Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys , 2009 .

[28]  Hsien-Lung Tsai,et al.  Effect of aging treatment on microstructure and properties of high-entropy Cu0.5CoCrFeNi alloy , 2010 .

[29]  Ichiro Takeuchi,et al.  Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials , 2013 .

[30]  D. Miracle,et al.  Nickel-aluminum-molybdenum phase equilibria , 1984 .

[31]  C. Colinet The thermodynamic properties of rare earth metallic systems , 1995 .

[32]  Jinshan Li,et al.  Effect of aging temperature on microstructure and properties of AlCoCrCuFeNi high-entropy alloy , 2009 .

[33]  Yang Wang,et al.  Annealing on the structure and properties evolution of the CoCrFeNiCuAl high-entropy alloy , 2010 .

[34]  O. J. Kleppa,et al.  Standard enthalpies of formation of some alloys formed between Group IV elements and Group VIII elements, determined by high-temperature direct synthesis calorimetry , 1998 .

[35]  D. Miracle,et al.  Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys , 2011 .

[36]  Krishna Rajan,et al.  Combinatorial and high-throughput screening of materials libraries: review of state of the art. , 2011, ACS combinatorial science.

[37]  Sheng Guo,et al.  Entropy-driven phase stability and slow diffusion kinetics in an Al0.5CoCrCuFeNi high entropy alloy , 2012 .

[38]  Yong Zhang,et al.  Cooling Rate and Size Effect on the Microstructure and Mechanical Properties of AlCoCrFeNi High Entropy Alloy , 2009 .

[39]  Zhongyi Liu,et al.  Effect of elemental interaction on microstructure of CuCrFeNiMn high entropy alloy system , 2010 .

[40]  Y. Hsu,et al.  Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution , 2005 .

[41]  James E. Dahlman,et al.  The Strength of Chemical Bonds in Solids and Liquids (Preprint) , 2011 .

[42]  C. Woodward,et al.  Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy , 2012, Journal of Materials Science.

[43]  Michael D. Uchic,et al.  Size-affected single-slip behavior of pure nickel microcrystals , 2005 .

[44]  E. Herderick,et al.  Additive Manufacturing of Metals: A Review , 2011 .

[45]  Kaufui Wong,et al.  A Review of Additive Manufacturing , 2012 .

[46]  B. S. Murty,et al.  Hot consolidation and mechanical properties of nanocrystalline equiatomic AlFeTiCrZnCu high entropy alloy after mechanical alloying , 2010 .

[47]  Fei Wang,et al.  Effect of Co addition on crystal structure and mechanical properties of Ti0.5CrFeNiAlCo high entropy alloy , 2008 .

[48]  Ying Wang,et al.  Effects of Mn, Ti and V on the microstructure and properties of AlCrFeCoNiCu high entropy alloy , 2008 .

[49]  C. Woodward,et al.  Microstructure and Room Temperature Properties of a High-Entropy TaNbHfZrTi Alloy (Postprint) , 2011 .

[50]  O. J. Kleppa,et al.  The standard enthalpies of formation of the compounds of early transition metals with late transition metals and with noble metals as determined by Kleppa and co-workers at the University of Chicago : A review , 2001 .

[51]  Jien-Wei Yeh,et al.  Alloy Design Strategies and Future Trends in High-Entropy Alloys , 2013 .

[52]  C. Woodward,et al.  Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system , 2013 .

[53]  Jien-Wei Yeh,et al.  Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0 ≤ x ≤2) high-entropy alloys , 2009 .

[54]  B. Cantor,et al.  Microstructural development in equiatomic multicomponent alloys , 2004 .

[55]  Fan Zhang,et al.  Phase Composition of a CrMo0.5NbTa0.5TiZr High Entropy Alloy: Comparison of Experimental and Simulated Data , 2013, Entropy.

[56]  H. Fraser,et al.  Size-affected single-slip behavior of René N5 microcrystals , 2012 .

[57]  Ji-Cheng Zhao Combinatorial approaches as effective tools in the study of phase diagrams and composition-structure-property relationships , 2006 .

[58]  Krishna Rajan,et al.  Combinatorial Materials Sciences: Experimental Strategies for Accelerated Knowledge Discovery , 2008 .

[59]  C. Liu,et al.  Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase , 2011 .

[60]  J. Yeh,et al.  Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys , 2013 .

[61]  Fu Lee Wang,et al.  Atomic packing efficiency and phase transition in a high entropy alloy , 2009 .

[62]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[63]  D. Gaskell Introduction to the Thermodynamics of Materials , 2017 .

[64]  S. Ranganathan,et al.  Alloyed pleasures: Multimetallic cocktails , 2003 .

[65]  M. Uchic,et al.  Stencil mask methodology for the parallelized production of microscale mechanical test samples. , 2012, The Review of scientific instruments.

[66]  I. Takeuchi,et al.  Role of high-throughput characterization tools in combinatorial materials science , 2004 .

[67]  M. Groeber,et al.  An Automated Multi-Modal Serial Sectioning System for Characterization of Grain-Scale Microstructures in Engineering Materials , 2012 .

[68]  Lawrence H. Bennett,et al.  Binary alloy phase diagrams , 1986 .

[69]  T. Chin,et al.  Alloying behavior of binary to octonary alloys based on Cu–Ni–Al–Co–Cr–Fe–Ti–Mo during mechanical alloying , 2009 .

[70]  Zushu Hu,et al.  Microstructures and compressive properties of multicomponent AlCoCrFeNiMox alloys , 2010 .

[71]  Yi Qiao,et al.  Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys , 2007 .

[72]  T. Chain,et al.  Phase selection rules for complex multi-component alloys with equiatomic or close-to-equiatomic compositions , 2013 .

[73]  Fu Lee Wang,et al.  Effect of Cu addition on the microstructure and mechanical properties of AlCoCrFeNiTi0.5 solid-solution alloy , 2008 .

[74]  P. Liaw,et al.  Solid‐Solution Phase Formation Rules for Multi‐component Alloys , 2008 .

[75]  F. D. Boer Cohesion in Metals: Transition Metal Alloys , 1989 .