Error-free boundary evaluation using lazy rational arithmetic: a detailed implementation

A new boundary evaluation method is presented. It is based on error-free Boolean operations on polyhedral solids. W e describe, in detail, an intersection algorithm that handles, in a straightforward way, all the possible geometric cases. We also describe a general data structure that allows an unified storage of solid boundaries. The intersection algorithm always runs to completion, producing consistent solids from consistent operands. Numerical errors are handled at an algorithm independent level: an original exact arithmetic that performs only the necessary precise computations. Results from our implementation of this CSG solver are discussed.

[1]  Victor J. Milenkovic,et al.  Verifiable Implementations of Geometric Algorithms Using Finite Precision Arithmetic , 1989, Artif. Intell..

[2]  Lee R. Nackman,et al.  Efficient Delaunay triangulation using rational arithmetic , 1991, TOGS.

[3]  Bruce G. Baumgart A polyhedron representation for computer vision , 1975, AFIPS '75.

[4]  John E. Hopcroft,et al.  Towards implementing robust geometric computations , 1988, SCG '88.

[5]  Carlo H. Séquin,et al.  Consistent calculations for solids modeling , 1985, SCG '85.

[6]  Mantyla,et al.  GWB: A Solid Modeler with Euler Operators , 1982, IEEE Computer Graphics and Applications.

[7]  Dominique Michelucci,et al.  A lazy exact arithmetic , 1993, Proceedings of IEEE 11th Symposium on Computer Arithmetic.

[8]  Carlo H. Séquin,et al.  Partitioning polyhedral objects into nonintersecting parts , 1988, IEEE Computer Graphics and Applications.

[9]  David H. Laidlaw,et al.  Constructive solid geometry for polyhedral objects , 1986, SIGGRAPH.

[10]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[11]  Dominique Michelucci,et al.  Les représentations par les frontières: quelques constructions ; difficultés rencontrées , 1986 .

[12]  Martti Mäntylä,et al.  Localized set operations for solid modeling , 1983, SIGGRAPH.

[13]  Kokichi Sugihara,et al.  A solid modelling system free from topological inconsistency , 1990 .

[14]  John E. Hopcroft,et al.  Robust set operations on polyhedral solids , 1987, IEEE Computer Graphics and Applications.

[15]  Leonidas J. Guibas,et al.  Epsilon geometry: building robust algorithms from imprecise computations , 1989, SCG '89.

[16]  A.A.G. Requicha,et al.  Boolean operations in solid modeling: Boundary evaluation and merging algorithms , 1985, Proceedings of the IEEE.

[17]  Mark Segal,et al.  Using tolerances to guarantee valid polyhedral modeling results , 1990, SIGGRAPH.

[18]  Robert B. Tilove,et al.  Set Membership Classification: A Unified Approach to Geometric Intersection Problems , 1980, IEEE Transactions on Computers.

[19]  Willard L. Miranker,et al.  Computer arithmetic in theory and practice , 1981, Computer science and applied mathematics.

[20]  ARISTIDES A. G. REQUICHA,et al.  Representations for Rigid Solids: Theory, Methods, and Systems , 1980, CSUR.

[21]  Michel Gangnet,et al.  Incremental computation of planar maps , 1989, SIGGRAPH '89.

[22]  Kurt Mehlhorn,et al.  Data Structures and Algorithms 3: Multi-dimensional Searching and Computational Geometry , 2012, EATCS Monographs on Theoretical Computer Science.