Extremal shot noise processes and random cutout sets

We study some fundamental properties, such as the transience, the recurrence, the first passage times and the zero-set of a certain type of sawtooth Markov processes, called extremal shot noise processes. The sets of zeros of the latter are Mandelbrot's random cutout sets, i.e. the sets obtained after placing Poisson random covering intervals on the positive half-line. Based on this connection, we provide a new proof of Fitzsimmons-Fristedt-Shepp Theorem which characterizes the random cutout sets.

[1]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[2]  Z. Kabluchko,et al.  Functional limit theorems for Galton–Watson processes with very active immigration , 2016, 1612.01573.

[3]  P. Marchal A class of special subordinators with nested ranges , 2015 .

[4]  Gerónimo Uribe Bravo,et al.  LOCAL EXTINCTION IN CONTINUOUS-STATE BRANCHING PROCESSES WITH IMMIGRATION , 2012, 1211.3699.

[5]  Chunhua Ma,et al.  On the hitting times of continuous-state branching processes with immigration , 2013, 1310.7401.

[6]  Jean-François Delmas,et al.  A population model with non-neutral mutations using branching processes with immigration , 2013, 1307.6749.

[7]  Björn Böttcher,et al.  Lévy-type processes : construction, approximation and sample path properties , 2013 .

[8]  W. Stadje,et al.  Hitting Times and the Running Maximum of Markovian Growth-Collapse Processes , 2011, Journal of Applied Probability.

[9]  Peter L. Ralph,et al.  Dynamics of the time to the most recent common ancestor in a large branching population. , 2008, 0812.1302.

[10]  C. Dombry Extremal shot noises, heavy tails and max-stable random fields , 2009, 0908.4221.

[11]  I. Molchanov,et al.  Some Limit Theorems for Extremal and Union Shot‐Noise Processes , 2006 .

[12]  O. Boxma,et al.  A Markovian growth-collapse model , 2006, Advances in Applied Probability.

[13]  J. Barral,et al.  Covering numbers of different points in Dvoretzky covering , 2005 .

[14]  J. Barral,et al.  Densities of some Poisson T-martingales and random covering numbers , 2004 .

[15]  V. Rivero On Random Sets Connected to the Partial Records of Poisson Point Process , 2003 .

[16]  B. Hambly Fractal Geometry and Stochastics II , 1998 .

[17]  J. Bertoin On nowhere differentiability for Lévy processes , 1994 .

[18]  J. Bertoin Increase of a lévy process with no positive jumps , 1991 .

[19]  J. Kahane Recouvrements aléatoires et théorie du potentiel , 1990 .

[20]  S. Resnick Extreme Values, Regular Variation, and Point Processes , 1987 .

[21]  B. Fristedt,et al.  Intersections and limits of regenerative sets , 1985 .

[22]  L. Shepp,et al.  The set of real numbers left uncovered by random covering intervals , 1985 .

[23]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[24]  L. A. Shepp,et al.  Covering the line with random intervals , 1972 .

[25]  B. Mandelbrot Renewal sets and random cutouts , 1972 .

[26]  Verzekeren Naar Sparen,et al.  Cambridge , 1969, Humphrey Burton: In My Own Time.

[27]  Anatoly,et al.  CAMBRIDGE TRACTS IN MATHEMATICS , 2022 .