Modular Fixed-size Vlsi Architectures for General Multisplitting Iteration

Motivated by the inherent parallelicity of the Multisplitting Iterative Methods, we consider their application for the solution of Large Linear Systems. The realistic parallel implementation of this problem led us to the employment of fixed-size VLSI architectures. Considering the case of General Splitting matrices we combine known as well as we design new VLSI BLAS modules to form fixed-size architectures capable of efficiently carrying out the computations involved in an oversized multisplitting iteration step. For the factorization of the splitting matrices we employ the LU decomposition method while for the organization of the data streams we use space-time partitioning techniques.

[1]  Benjamin W. Wah,et al.  Systematic approaches to the design of algorithmically specified systolic arrays , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[2]  R. Plemmons,et al.  Convergence of parallel multisplitting iterative methods for M-matrices , 1987 .

[3]  Benjamin W. Wah,et al.  The Design of Optimal Systolic Arrays , 1985, IEEE Transactions on Computers.

[4]  R. White Parallel algorithms for nonlinear problems , 1986 .

[5]  S. Kung,et al.  VLSI Array processors , 1985, IEEE ASSP Magazine.

[6]  Thomas Kailath,et al.  Regular iterative algorithms and their implementation on processor arrays , 1988, Proc. IEEE.

[7]  H. T. Kung Let's Design Algorithms for VLSI Systems , 1979 .

[8]  D.I. Moldovan,et al.  On the design of algorithms for VLSI systolic arrays , 1983, Proceedings of the IEEE.

[9]  Sun-Yuan Kung,et al.  On supercomputing with systolic/wavefront array processors , 1984 .

[10]  Gene H. Golub,et al.  Matrix computations , 1983 .

[11]  Dan I. Moldovan,et al.  Partitioning and Mapping Algorithms into Fixed Size Systolic Arrays , 1986, IEEE Transactions on Computers.

[12]  T. Kailath,et al.  Array architectures for iterative algorithms , 1987, Proceedings of the IEEE.

[13]  Yiannis Saridakis New parallel iterative schemes and the AOR method , 1988 .

[14]  Evanthia Papadopoulou,et al.  Least-Squares Iterative Solution on a Fixed-Size VLSI Architecture , 1987, ICS.

[15]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[16]  Theodore S. Papatheodorou,et al.  Orderings and partition of PDE computations for a fixed-size VLSI architecture , 1987, FJCC.

[17]  Theodore S. Papatheodorou,et al.  Parallel algorithms and architectures for multisplitting iterative methods , 1989, Parallel Comput..

[18]  E. Papadopoulou,et al.  Multisplitting iterative methods on fixed-size VLSI architectures , 1995 .

[19]  D. O’Leary,et al.  Multi-Splittings of Matrices and Parallel Solution of Linear Systems , 1985 .

[20]  H. Kung,et al.  An algebra for VLSI algorithm design , 1983 .

[21]  King-Sun Fu,et al.  Algorithm partition for a fixed-size VLSI architecture using space-time domain expansion , 1985, 1985 IEEE 7th Symposium on Computer Arithmetic (ARITH).

[22]  Louis A. Hageman,et al.  Iterative Solution of Large Linear Systems. , 1971 .

[23]  J. Ortega,et al.  Solution of Partial Differential Equations on Vector and Parallel Computers , 1987 .

[24]  Thomas Kailath,et al.  A Family of New Efficient Arrays for Matrix Multiplication , 1989, IEEE Trans. Computers.

[25]  H. T. Kung,et al.  Systolic Arrays for (VLSI). , 1978 .

[26]  Kai Hwang,et al.  Partitioned Matrix Algorithms for VLSI Arithmetic Systems , 1982, IEEE Trans. Computers.

[27]  H. T. Kung Why systolic architectures? , 1982, Computer.

[28]  Peter R. Cappello,et al.  Unifying VLSI Array Designs with Geometric Transformations , 1983, International Conference on Parallel Processing.

[29]  J. D. Adam,et al.  Analog signal processing with microwave magnetics , 1988, Proc. IEEE.