Low‐Temperature and Hysteresis‐Free Electron‐Transporting Layers for Efficient, Regular, and Planar Structure Perovskite Solar Cells

With the aim of fully utilizing the low processing temperatures of perovskite solar cells, significant progress in replacing high temperature processed TiO2 by various low‐temperature solution processed electron transporting layers (LT‐ETLs) was recently reported. Here, recent progress in the development of LT‐ETLs for regular planar structure perovskite solar cells, which is essential for achieving high efficiency in parallel to avoiding hysteresis, is reviewed. In addition, the application of a novel hysteresis‐free LT‐ETLs for regular planar perovskite solar cells in our laboratory is briefly discussed. By incorporating a low temperature processed WOx nanoparticular layer in combination with a mixed fullerene functionalized self‐assembled monolayers (SAMs), a regular, planar structure, and hysteresis‐free perovskite solar cell with a maximum efficiency of almost 15% can be fabricated.

[1]  Kai Zhu,et al.  Trend of Perovskite Solar Cells: Dig Deeper to Build Higher. , 2015, The journal of physical chemistry letters.

[2]  M. Halik,et al.  Structural investigations of self-assembled monolayers for organic electronics: results from X-ray reflectivity. , 2015, Accounts of chemical research.

[3]  Timothy L. Kelly,et al.  Origin of the Thermal Instability in CH3NH3PbI3 Thin Films Deposited on ZnO , 2015 .

[4]  C. Brabec,et al.  A Universal Interface Layer Based on an Amine‐Functionalized Fullerene Derivative with Dual Functionality for Efficient Solution Processed Organic and Perovskite Solar Cells , 2015 .

[5]  Mohammad Khaja Nazeeruddin,et al.  Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field , 2015 .

[6]  Hongzheng Chen,et al.  Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. , 2015, Journal of the American Chemical Society.

[7]  Qingshun Dong,et al.  Low-Temperature and Solution-Processed Amorphous WO(x) as Electron-Selective Layer for Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[8]  Seong Sik Shin,et al.  Fabrication of metal-oxide-free CH3NH3PbI3 perovskite solar cells processed at low temperature , 2015 .

[9]  Dane W. deQuilettes,et al.  Zr Incorporation into TiO2 Electrodes Reduces Hysteresis and Improves Performance in Hybrid Perovskite Solar Cells while Increasing Carrier Lifetimes. , 2015, The journal of physical chemistry letters.

[10]  Noel Clark,et al.  3D Printer Based Slot‐Die Coater as a Lab‐to‐Fab Translation Tool for Solution‐Processed Solar Cells , 2015 .

[11]  Jegadesan Subbiah,et al.  Toward Large Scale Roll‐to‐Roll Production of Fully Printed Perovskite Solar Cells , 2015, Advanced materials.

[12]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[13]  Tsutomu Miyasaka,et al.  Emergence of Hysteresis and Transient Ferroelectric Response in Organo-Lead Halide Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[14]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[15]  Garry Rumbles,et al.  Heterojunction modification for highly efficient organic-inorganic perovskite solar cells. , 2014, ACS nano.

[16]  Heng Li,et al.  Hysteresis Analysis Based on the Ferroelectric Effect in Hybrid Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[17]  Ling Wang,et al.  Low temperature solution processed planar heterojunction perovskite solar cells with a CdSe nanocrystal as an electron transport/extraction layer , 2014 .

[18]  Eric T. Hoke,et al.  Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells , 2014 .

[19]  M. Halik,et al.  Tuning the molecular order of C60-based self-assembled monolayers in field-effect transistors. , 2014, Nanoscale.

[20]  Yuanyuan Zhou,et al.  Direct Observation of Ferroelectric Domains in Solution-Processed CH3NH3PbI3 Perovskite Thin Films. , 2014, The journal of physical chemistry letters.

[21]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[22]  Nam-Gyu Park,et al.  Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer. , 2014, The journal of physical chemistry letters.

[23]  Yasuhiro Yamada,et al.  Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications. , 2014, Journal of the American Chemical Society.

[24]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[25]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[26]  A. Marcelis,et al.  Covalent surface modification of oxide surfaces. , 2014, Angewandte Chemie.

[27]  C. Brabec,et al.  Towards low-cost, environmentally friendly printed chalcopyrite and kesterite solar cells , 2014 .

[28]  Aron Walsh,et al.  Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells , 2014, 1405.5810.

[29]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[30]  Peng Gao,et al.  Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency. , 2014, Nano letters.

[31]  Sung-Hoon Lee,et al.  The Role of Intrinsic Defects in Methylammonium Lead Iodide Perovskite. , 2014, The journal of physical chemistry letters.

[32]  Peng Gao,et al.  Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. , 2014, Angewandte Chemie.

[33]  M. Grätzel,et al.  Analysis of electron transfer properties of ZnO and TiO2 photoanodes for dye-sensitized solar cells. , 2014, ACS nano.

[34]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[35]  Peng Gao,et al.  Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. , 2014, ACS nano.

[36]  Juan Bisquert,et al.  Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. , 2013, Nano letters.

[37]  Alain Goriely,et al.  Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells , 2014 .

[38]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[39]  Erik M. J. Johansson,et al.  Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures , 2013 .

[40]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[41]  Juan Bisquert,et al.  Mechanism of carrier accumulation in perovskite thin-absorber solar cells , 2013, Nature Communications.

[42]  M. Halik,et al.  Phosphonate- and carboxylate-based self-assembled monolayers for organic devices: a theoretical study of surface binding on aluminum oxide with experimental support. , 2013, ACS applied materials & interfaces.

[43]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[44]  M. Halik,et al.  Improving the charge transport in self-assembled monolayer field-effect transistors: from theory to devices. , 2013, Journal of the American Chemical Society.

[45]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[46]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[47]  Peter J. Hotchkiss,et al.  The modification of indium tin oxide with phosphonic acids: mechanism of binding, tuning of surface properties, and potential for use in organic electronic applications. , 2012, Accounts of chemical research.

[48]  Michael Grätzel,et al.  Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency , 2011, Science.

[49]  Aram Amassian,et al.  Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. , 2011, Nature materials.

[50]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[51]  C. Brabec,et al.  Plastic Solar Cells , 2001 .