The evolution of chaotic dynamics for fractional unified system

Abstract Based on reliable numerical approach, this Letter studies the chaotic behavior of the fractional unified system. The lowest orders for this system to have a complete chaotic attractor (the attractor covers the three equilibrium points of the classical unified system) at different parameter values are obtained. A striking finding is that with the increase of the parameter α of the fractional unified system from 0 to 1, the lowest order for this system to have a complete chaotic attractor monotonically decreases from 2.97 to 2.07. Because of the inherent attribute ( memory effects ) of fractional derivatives, this finding reveals that the chaotic behavior of fractional (classical) unified system becomes stronger and stronger when α increases from 0 to 1. Furthermore, this Letter introduces a novel measure to characterize the chaos intensity of fractional (classical) differential system.

[1]  A. Stanislavsky,et al.  Memory effects and macroscopic manifestation of randomness. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  Vasily E. Tarasov,et al.  Magnetohydrodynamics of fractal media , 2006, 0711.0305.

[3]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[4]  B. Onaral,et al.  Fractal system as represented by singularity function , 1992 .

[5]  G. Zaslavsky Chaos, fractional kinetics, and anomalous transport , 2002 .

[6]  Weihua Deng,et al.  Synchronization of Chaotic Fractional Chen System , 2005 .

[7]  Elena Grigorenko,et al.  Erratum: Chaotic Dynamics of the Fractional Lorenz System [Phys. Rev. Lett.91, 034101 (2003)] , 2006 .

[8]  W. Deng,et al.  Chaos synchronization of the fractional Lü system , 2005 .

[9]  G. Zaslavsky,et al.  Nonlinear fractional dynamics on a lattice with long range interactions , 2005, nlin/0512010.

[10]  Junguo Lu,et al.  Nonlinear observer design to synchronize fractional-order chaotic systems via a scalar transmitted signal , 2006 .

[11]  G. Zaslavsky,et al.  Fractional dynamics of systems with long-range interaction , 2006, 1107.5436.

[12]  Hao Wang,et al.  Nonlinear rheology and flow-induced structure in a concentrated spherical silica suspension , 1998 .

[13]  Guanrong Chen,et al.  SCALING ATTRACTORS OF FRACTIONAL DIFFERENTIAL SYSTEMS , 2006 .

[14]  Vasily E. Tarasov,et al.  Electromagnetic field of fractal distribution of charged particles , 2005, physics/0610010.

[15]  Guanrong Chen,et al.  On a Generalized Lorenz Canonical Form of Chaotic Systems , 2002, Int. J. Bifurc. Chaos.

[16]  Chunguang Li,et al.  Chaos in the fractional order Chen system and its control , 2004 .

[17]  Julien Clinton Sprott,et al.  Chaos in fractional-order autonomous nonlinear systems , 2003 .

[18]  I. Podlubny Fractional differential equations , 1998 .

[19]  F. Mainardi Fractional Relaxation-Oscillation and Fractional Diffusion-Wave Phenomena , 1996 .

[20]  Weihua Deng,et al.  Remarks on fractional derivatives , 2007, Appl. Math. Comput..

[21]  Daolin Xu,et al.  Chaos synchronization of the Chua system with a fractional order , 2006 .

[22]  Weihua Deng,et al.  Short memory principle and a predictor-corrector approach for fractional differential equations , 2007 .

[23]  Jun-Guo Lu,et al.  Synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal , 2006 .

[24]  Nobumasa Sugimoto Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves , 1991, Journal of Fluid Mechanics.

[25]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[26]  R. Koeller Applications of Fractional Calculus to the Theory of Viscoelasticity , 1984 .

[27]  D. Kusnezov,et al.  Quantum Levy Processes and Fractional Kinetics , 1999, chao-dyn/9901002.

[28]  Vasily E. Tarasov,et al.  Dynamics with low-level fractionality , 2005, physics/0511138.

[29]  C. F. Lorenzo,et al.  Chaos in a fractional order Chua's system , 1995 .

[30]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[31]  Elena Grigorenko,et al.  Chaotic dynamics of the fractional Lorenz system. , 2003, Physical review letters.

[32]  Vasily E. Tarasov MULTIPOLE MOMENTS OF FRACTAL DISTRIBUTION OF CHARGES , 2005 .

[33]  D. Ingman,et al.  Iteration method for equation of viscoelastic motion with fractional differential operator of damping , 2001 .

[34]  G. Zaslavsky,et al.  Fractional dynamics of coupled oscillators with long-range interaction. , 2005, Chaos.

[35]  Benoit B. Mandelbrot,et al.  Some noises with I/f spectrum, a bridge between direct current and white noise , 1967, IEEE Trans. Inf. Theory.

[36]  Francesco Mainardi,et al.  On Mittag-Leffler-type functions in fractional evolution processes , 2000 .

[37]  S. Čelikovský,et al.  Control systems: from linear analysis to synthesis of chaos , 1996 .

[38]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[39]  Vickie E. Lynch,et al.  Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model , 2001 .

[40]  Weihua Deng,et al.  Stability of N-Dimensional Linear Systems with Multiple Delays and Application to Synchronization , 2006, J. Syst. Sci. Complex..

[41]  Daizhan Cheng,et al.  Bridge the Gap between the Lorenz System and the Chen System , 2002, Int. J. Bifurc. Chaos.

[42]  Junguo Lu Chaotic dynamics of the fractional-order Lü system and its synchronization , 2006 .

[43]  Weihua Deng,et al.  Stability Analysis of Differential Equations with Time-Dependent Delay , 2006, Int. J. Bifurc. Chaos.

[44]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and Linear Algebra , 1974 .

[45]  Changpin Li,et al.  Does the fractional Brusselator with efficient dimension less than 1 have a limit cycle , 2007 .

[46]  Jinhu Lü,et al.  Stability analysis of linear fractional differential system with multiple time delays , 2007 .

[47]  P. Butzer,et al.  AN INTRODUCTION TO FRACTIONAL CALCULUS , 2000 .

[48]  C. Chee,et al.  A necessary condition of projective synchronization in discrete-time systems of arbitrary dimensions , 2004 .

[49]  Guanrong Chen,et al.  On the generalized Lorenz canonical form , 2005 .

[50]  Guanrong Chen,et al.  A note on the fractional-order Chen system , 2006 .